scholarly journals Brain-Inspired Healthcare Smart System Based on Perception-Action Cycle

2020 ◽  
Vol 10 (10) ◽  
pp. 3532
Author(s):  
Jesús Jaime Moreno Escobar ◽  
Oswaldo Morales Matamoros ◽  
Ricardo Tejeida Padilla ◽  
Ixchel Lina Reyes ◽  
Liliana Chanona Hernández ◽  
...  

This work presents the HSS-Cognitive project, which is a Healthcare Smart System that can be applied in measuring the efficiency of any therapy where neuronal interaction gives a trace whether the therapy is efficient or not, using mathematical tools. The artificial intelligence of the project underlies in the understanding of brain signals or Electroencephalogram (EEG) by means of the determination of the Power Spectral Density (PSD) over all the EEG bands in order to estimate how efficient was a therapy. Our project HSS-Cognitive was applied, recording the EEG signals from two patients treated for 8 min in a dolphin tank, measuring their activity in five experiments and for 6 min measuring their activity in a pool without dolphin in four experiments. After applying our TEA (Therapeutic Efficiency Assessment) metric for patient 1, we found that this patient had gone from having relaxation states regardless of the dolphin to attention states when the dolphin was presented. For patient 2, we found that he had maintained attention states regardless of the dolphin, that is, the DAT (Dolphin Assisted Therapy) did not have a significant effect in this patient, perhaps because he had a surgery last year in order to remove a tumor, having impact on the DAT effectiveness. However, patient 2 presented the best efficiency when doing physical therapy led by a therapist in a pool without dolphins around him. According to our findings, we concluded that our Brain-Inspired Healthcare Smart System can be considered a reliable tool for measuring the efficiency of a dolphin-assisted therapy and not only for therapist or medical doctors but also for researchers in neurosciences.

Author(s):  
Tee Yi Wen ◽  
Siti Armiza Mohd Aris

<span>This paper presents an analysis of stress feature using the power ratio of frequency bands including Alpha to Beta and Theta to Beta. In this study, electroencephalography (EEG) acquisition tool was utilized to collect brain signals from 40 subjects and objectively reflected stress features induced by virtual reality (VR) technology. The EEG signals were analyzed using Welch’s fast Fourier transform (FFT) to extract power spectral density (PSD) features which represented the power of a signal distributed over a range of frequencies. Slow wave versus fast wave (SW/FW) of EEG has been studied to discriminate stress from resting baseline. The results showed the Alpha/Beta ratio and Theta/Beta ratio are negatively correlated with stress and indicated that the power ratios can discriminate the data characteristics of brainwaves for stress assessment.</span>


2007 ◽  
Vol 2007 ◽  
pp. 1-12 ◽  
Author(s):  
Gerolf Vanacker ◽  
José del R. Millán ◽  
Eileen Lew ◽  
Pierre W. Ferrez ◽  
Ferran Galán Moles ◽  
...  

Controlling a robotic device by using human brain signals is an interesting and challenging task. The device may be complicated to control and the nonstationary nature of the brain signals provides for a rather unstable input. With the use of intelligent processing algorithms adapted to the task at hand, however, the performance can be increased. This paper introduces a shared control system that helps the subject in driving an intelligent wheelchair with a noninvasive brain interface. The subject's steering intentions are estimated from electroencephalogram (EEG) signals and passed through to the shared control system before being sent to the wheelchair motors. Experimental results show a possibility for significant improvement in the overall driving performance when using the shared control system compared to driving without it. These results have been obtained with 2 healthy subjects during their first day of training with the brain-actuated wheelchair.


2017 ◽  
Vol 10 (13) ◽  
pp. 137
Author(s):  
Darshan A Khade ◽  
Ilakiyaselvan N

This study aims to classify the scene and object using brain waves signal. The dataset captured by the electroencephalograph (EEG) device by placing the electrodes on scalp to measure brain signals are used. Using captured EEG dataset, classifying the scene and object by decoding the changes in the EEG signals. In this study, independent component analysis, event-related potentials, and grand mean are used to analyze the signal. Machine learning algorithms such as decision tree, random forest, and support vector machine are used to classify the data. This technique is useful in forensic as well as in artificial intelligence for developing future technology. 


2020 ◽  
Vol 10 (9) ◽  
pp. 3036 ◽  
Author(s):  
Hongquan Qu ◽  
Yiping Shan ◽  
Yuzhe Liu ◽  
Liping Pang ◽  
Zhanli Fan ◽  
...  

Excessive mental workload will reduce work efficiency, but low mental workload will cause a waste of human resources. It is very significant to study the mental workload status of operators. The existing mental workload classification method is based on electroencephalogram (EEG) features, and its classification accuracy is often low because the channel signals recorded by the EEG electrodes are a group of mixed brain signals, which are similar to multi-source mixed speech signals. It is not wise to directly analyze the mixed signals in order to distinguish the feature of EEG signals. In this study, we propose a mental workload classification method based on EEG independent components (ICs) features, which borrows from the blind source separation (BSS) idea of mixed speech signals. This presented method uses independent component analysis (ICA) to obtain pure signals, i.e., ICs. The energy features of ICs are directly extracted for classifying the mental workload, since this method directly uses ICs energy features for feature extraction. Compared with the existing solution, the proposed method can obtain better classification results. The presented method might provide a way to realize a fast, accurate, and automatic mental workload classification.


Author(s):  
BÜLENT YILMAZ ◽  
CENGİZ GAZELOĞLU ◽  
FATİH ALTINDİŞ

Neuromarketing is the application of the neuroscientific approaches to analyze and understand economically relevant behavior. In this study, the effect of loud and rhythmic music in a sample neuromarketing setup is investigated. The second aim was to develop an approach in the prediction of preference using only brain signals. In this work, 19- channel EEG signals were recorded and two experimental paradigms were implemented: no music/silence and rhythmic, loud music using a headphone, while viewing women shoes. For each 10-sec epoch, normalized power spectral density (PSD) of EEG data for six frequency bands was estimated using the Burg method. The effect of music was investigated by comparing the mean differences between music and no music groups using independent two-sample t-test. In the preference prediction part sequential forward selection, k-nearest neighbors (k-NN) and the support vector machines (SVM), and 5-fold cross-validation approaches were used. It is found that music did not affect like decision in any of the power bands, on the contrary, music affected dislike decisions for all bands with no exceptions. Furthermore, the accuracies obtained in preference prediction study were between 77.5 and 82.5% for k-NN and SVM techniques. The results of the study showed the feasibility of using EEG signals in the investigation of the music effect on purchasing behavior and the prediction of preference of an individual.


2015 ◽  
Vol 75 (4) ◽  
Author(s):  
Faris Amin M. Abuhashish ◽  
Hoshang Kolivand ◽  
Mohd Shahrizal Sunar ◽  
Dzulkifli Mohamad

A Brain-Computer Interface (BCI) is the device that can read and acquire the brain activities. A human body is controlled by Brain-Signals, which considered as a main controller. Furthermore, the human emotions and thoughts will be translated by brain through brain signals and expressed as human mood. This controlling process mainly performed through brain signals, the brain signals is a key component in electroencephalogram (EEG). Based on signal processing the features representing human mood (behavior) could be extracted with emotion as a major feature. This paper proposes a new framework in order to recognize the human inner emotions that have been conducted on the basis of EEG signals using a BCI device controller. This framework go through five steps starting by classifying the brain signal after reading it in order to obtain the emotion, then map the emotion, synchronize the animation of the 3D virtual human, test and evaluate the work. Based on our best knowledge there is no framework for controlling the 3D virtual human. As a result for implementing our framework will enhance the game field of enhancing and controlling the 3D virtual humans’ emotion walking in order to enhance and bring more realistic as well. Commercial games and Augmented Reality systems are possible beneficiaries of this technique.


The Electroencephalogram (EEG) is the standard technique for investigating the brain’s electrical activity in different psychological and pathological states. Analysis of Electroencephalogram (EEG) signal is a challenging task by reason of the presence of different artifacts such as Ocular Artifacts (OA) and Electromyogram. Normally EEG signals falls in the frequency range of DC to 60 Hz and amplitude of 1-5 µv. Ocular artifacts do have the similar statistical properties of EEG signals, often interfere with EEG signal, thereby making the analysis of EEG signals more complex. In this research paper, removal of artifacts was done using wavelets (matlab coding) as well as using SIMULINK DWT and IDWT blocks and estimated the SNR. In the next stage the output of IDWT block was taken as input to Burg model and Yule walker model to estimate the power spectral density of EEG signal by setting the various parameters of the blocks. The implementation of denoising of EEG signal using SIMULINK DWT and IDWT blocks and estimation of power spectral density of denoised EEG signal using Burg model and Yule walker model was explained in detail in the paper under the methodology heading. In this research paper, the collected EEG signal is normalized and later linearly mixed with the normalized EOG signal resulting in a noisy EEG signal. This noisy EEG signal is decomposed to 4 levels by using different wavelets. This decomposition of EEG signals yields approximate and detail coefficients. Later different thresholding techniques were applied to detail coefficients and estimated the Signal to Noise Ratio of it and estimated the power spectral density of denoised EEG signal obtained from dB4 wavelet as it is providing better SNR than other wavelets mentioned in the results.


Algorithms ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 145
Author(s):  
Hongquan Qu ◽  
Zhanli Fan ◽  
Shuqin Cao ◽  
Liping Pang ◽  
Hao Wang ◽  
...  

Electroencephalogram (EEG) signals contain a lot of human body performance information. With the development of the brain–computer interface (BCI) technology, many researchers have used the feature extraction and classification algorithms in various fields to study the feature extraction and classification of EEG signals. In this paper, the sensitive bands of EEG data under different mental workloads are studied. By selecting the characteristics of EEG signals, the bands with the highest sensitivity to mental loads are selected. In this paper, EEG signals are measured in different load flight experiments. First, the EEG signals are preprocessed by independent component analysis (ICA) to remove the interference of electrooculogram (EOG) signals, and then the power spectral density and energy are calculated for feature extraction. Finally, the feature importance is selected based on Gini impurity. The classification accuracy of the support vector machines (SVM) classifier is verified by comparing the characteristics of the full band with the characteristics of the β band. The results show that the characteristics of the β band are the most sensitive in EEG data under different mental workloads.


2018 ◽  
Author(s):  
Ramiro Gatti ◽  
Yanina Atum ◽  
Luciano Schiaffino ◽  
Mads Jochumsen ◽  
José Biurrun Manresa

AbstractBuilding accurate movement decoding models from brain signals is crucial for many biomedical applications. Decoding specific movement features, such as speed and force, may provide additional useful information at the expense of increasing the complexity of the decoding problem. Recent attempts to predict movement speed and force from the electroencephalogram (EEG) achieved classification accuracy levels not better than chance, stressing the demand for more accurate prediction strategies. Thus, the aim of this study was to improve the prediction accuracy of hand movement speed and force from single-trial EEG signals recorded from healthy volunteers. A strategy based on convolutional neural networks (ConvNets) was tested, since it has previously shown good performance in the classification of EEG signals. ConvNets achieved an overall accuracy of 84% in the classification of two different levels of speed and force (4-class classification) from single-trial EEG. These results represent a substantial improvement over previously reported results, suggesting that hand movement speed and force can be accurately predicted from single-trial EEG.


Author(s):  
T Waili ◽  
Md Gapar Md Johar ◽  
K. A. Sidek ◽  
N. S. H. Mohd Nor ◽  
H. Yaacob ◽  
...  

<p class="0abstract">This study investigates the capability of electroencephalogram (EEG) signals to be used for biometric identification. In the context of biometric, recently, researchers have been focusing more on biomedical signals to substitute the biometric modalities that are being used nowadays as the signals obtained from our bodies is considered more secure and privacy-compliant. The EEG signals of 6 subjects were collected where the subjects were required to undergo two baseline experiments which are, eyes open (EO) and eyes closed (EC). The signals were processed using a 2nd order Butterworth filter to eliminate the unwanted noise in the signals. Then, Daubechies (db8) wavelet was applied to the signals in the feature extraction stage and from there, Power Spectral Density (PSD) of alpha and beta waves was computed. Finally, the correlation model and Multilayer Perceptron Neural Network (MLPNN) was applied to classify the EEG signals of each subject.  Correlation model has yielded great significant difference of coefficient between autocorrelation and cross-correlation where it gives the coefficient value of 1 for autocorrelation and the coefficient value of less than 0.35 for cross-correlation. On the other hand, the MLPNN model gives an accuracy of 75.8% and 71.5% for classification during EO and EC baseline condition respectively. Therefore, these results support the usability of EEG signals in biometric recognition.</p>


Sign in / Sign up

Export Citation Format

Share Document