scholarly journals Quantum Dilation and Erosion

2020 ◽  
Vol 10 (11) ◽  
pp. 4040 ◽  
Author(s):  
Shi-Yuan Ma ◽  
Ashraf Khalil ◽  
Hassan Hajjdiab ◽  
Hichem Eleuch

The dilation and erosion operations are the first fundamental step in classical image processing. They are important in many image processing algorithms to extract basic image features, such as geometric shapes; such shapes are then fed to higher level algorithms for object identification and recognition. In this paper, we present an improved quantum method to realize dilation and erosion in imaging processing. Unlike in the classical way, in the quantum version of imaging processing, all of the information is stored in quantum bits (qubits). We use qubits to code the location and other information of each pixel of the images and apply quantum operators (or quantum gates) to accomplish specific functions. Because of quantum entanglement and other nonintuitive features in quantum mechanics, qubits have many advantages over classical bits, but their nature presents challenges in designing quantum algorithms. We first built the quantum circuit theoretically, and then ran it on the IBM Quantum Experience platform to test and process real images. With this algorithm, we are looking forward to more potential applications in quantum computation.

2021 ◽  
pp. 2150360
Author(s):  
Wanghao Ren ◽  
Zhiming Li ◽  
Yiming Huang ◽  
Runqiu Guo ◽  
Lansheng Feng ◽  
...  

Quantum machine learning is expected to be one of the potential applications that can be realized in the near future. Finding potential applications for it has become one of the hot topics in the quantum computing community. With the increase of digital image processing, researchers try to use quantum image processing instead of classical image processing to improve the ability of image processing. Inspired by previous studies on the adversarial quantum circuit learning, we introduce a quantum generative adversarial framework for loading and learning a quantum image. In this paper, we extend quantum generative adversarial networks to the quantum image processing field and show how to learning and loading an classical image using quantum circuits. By reducing quantum gates without gradient changes, we reduced the number of basic quantum building block from 15 to 13. Our framework effectively generates pure state subject to bit flip, bit phase flip, phase flip, and depolarizing channel noise. We numerically simulate the loading and learning of classical images on the MINST database and CIFAR-10 database. In the quantum image processing field, our framework can be used to learn a quantum image as a subroutine of other quantum circuits. Through numerical simulation, our method can still quickly converge under the influence of a variety of noises.


Author(s):  
Liang Gong ◽  
Chenhui Lin ◽  
Zhuang Mo ◽  
Xiaoye Shen ◽  
Ke Lin ◽  
...  

In addition to image filtering in the spatial and frequency domains, fractal characteristics induced algorithms offers considerable flexibility in the design and implementations of image processing solutions in areas such as image enhancement, image restoration, image data compression and spectrum of applications of practical interests. Facing up to a real-world problem of identifying workpiece surface defects, a generic adaptive fractal filtering algorithm is proposed, which shows advantages on the problems of target recognition, feature extraction and image denoising at multiple scales. First, we reveal the physical principles underlying between signal SNR and its representative fractal dimension indicative parameters, validating that the fractal dimension can be used to adaptively obtain the image features. Second, an adaptive fractal filtering algorithm (Abbreviated as AFFA) is proposed according to the identified correlation between the image fractal dimensions and the scales of objects, and it is verified by a benchmarking image processing case study. Third, by using the proposed fractal filtering algorithm, surface defects on a flange workpiece are identified. Compared to conventional image processing algorithms, the proposed algorithm shows superior computing simplicity and better performance Numerical analysis and engineering case studies show that the fractal dimension is eligible for deriving an adaptive filtering algorithm for diverse-scale object identification, and the proposed AFFA is feasible for general application in workpiece surface defect detection. 


2018 ◽  
Vol 69 (2) ◽  
pp. 521-524
Author(s):  
Magda Ecaterina Antohe ◽  
Doriana Agop Forna ◽  
Cristina Gena Dascalu ◽  
Norina Consuela Forna

The application of certain digital processing techniques offers the possibility of extra accuracy in the interpretation of paraclinical examinations of this type, with profound implications in the diagnosis as well as in the hierarchy of the treatment plan. The purpose of this study is to identify the type of imaging processing for the identification of pathological elements from orthopantomographies and articular tomographies. A number of 20 orthopantomographies and 15 temporo-mandibular joint tomography have undergone through various image enhancement techniques. Various methods of image enhancement (enhancement) have been used for those procedures whereby it becomes more useful in the following aspects: specific details are highlighted; noise is eliminated; the image becomes more visually attractive. The workings were done in Corel PhotoPaint 7.0, using the automatic procedures available.The choice of a particular type of image enhancement technique has been selected for each type of pathology found in orthopantomographies or articular tomography, providing the best accuracy for an optimal imaging interpretation that underpins a precision diagnosis.Of the most useful imaging processing in the optimization of the orthopantomographic image accuracy the point-to-point transformations are to be noted. The image processing proposed in this article focused primarily on improving the radiological image attributes to highlight specific anatomical structures, and secondly, the contour detection, where it was necessary for the diagnostic purposes as well.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-35
Author(s):  
Adrien Suau ◽  
Gabriel Staffelbach ◽  
Henri Calandra

In the last few years, several quantum algorithms that try to address the problem of partial differential equation solving have been devised: on the one hand, “direct” quantum algorithms that aim at encoding the solution of the PDE by executing one large quantum circuit; on the other hand, variational algorithms that approximate the solution of the PDE by executing several small quantum circuits and making profit of classical optimisers. In this work, we propose an experimental study of the costs (in terms of gate number and execution time on a idealised hardware created from realistic gate data) associated with one of the “direct” quantum algorithm: the wave equation solver devised in [32]. We show that our implementation of the quantum wave equation solver agrees with the theoretical big-O complexity of the algorithm. We also explain in great detail the implementation steps and discuss some possibilities of improvements. Finally, our implementation proves experimentally that some PDE can be solved on a quantum computer, even if the direct quantum algorithm chosen will require error-corrected quantum chips, which are not believed to be available in the short-term.


Author(s):  
Giovanni Acampora ◽  
Roberto Schiattarella

AbstractQuantum computers have become reality thanks to the effort of some majors in developing innovative technologies that enable the usage of quantum effects in computation, so as to pave the way towards the design of efficient quantum algorithms to use in different applications domains, from finance and chemistry to artificial and computational intelligence. However, there are still some technological limitations that do not allow a correct design of quantum algorithms, compromising the achievement of the so-called quantum advantage. Specifically, a major limitation in the design of a quantum algorithm is related to its proper mapping to a specific quantum processor so that the underlying physical constraints are satisfied. This hard problem, known as circuit mapping, is a critical task to face in quantum world, and it needs to be efficiently addressed to allow quantum computers to work correctly and productively. In order to bridge above gap, this paper introduces a very first circuit mapping approach based on deep neural networks, which opens a completely new scenario in which the correct execution of quantum algorithms is supported by classical machine learning techniques. As shown in experimental section, the proposed approach speeds up current state-of-the-art mapping algorithms when used on 5-qubits IBM Q processors, maintaining suitable mapping accuracy.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jun Yang ◽  
James Brown ◽  
James Daniel Whitfield

Quantum algorithms are touted as a way around some classically intractable problems such as the simulation of quantum mechanics. At the end of all quantum algorithms is a quantum measurement whereby classical data is extracted and utilized. In fact, many of the modern hybrid-classical approaches are essentially quantum measurements of states with short quantum circuit descriptions. Here, we compare and examine three methods of extracting the time-dependent one-particle probability density from a quantum simulation: direct Z-measurement, Bayesian phase estimation, and harmonic inversion. We have tested these methods in the context of the potential inversion problem of time-dependent density functional theory. Our test results suggest that direct measurement is the preferable method. We also highlight areas where the other two methods may be useful and report on tests using Rigetti's quantum virtual device. This study provides a starting point for imminent applications of quantum computing.


Author(s):  
N Seijdel ◽  
N Tsakmakidis ◽  
EHF De Haan ◽  
SM Bohte ◽  
HS Scholte

AbstractFeedforward deep convolutional neural networks (DCNNs) are, under specific conditions, matching and even surpassing human performance in object recognition in natural scenes. This performance suggests that the analysis of a loose collection of image features could support the recognition of natural object categories, without dedicated systems to solve specific visual subtasks. Research in humans however suggests that while feedforward activity may suffice for sparse scenes with isolated objects, additional visual operations (‘routines’) that aid the recognition process (e.g. segmentation or grouping) are needed for more complex scenes. Linking human visual processing to performance of DCNNs with increasing depth, we here explored if, how, and when object information is differentiated from the backgrounds they appear on. To this end, we controlled the information in both objects and backgrounds, as well as the relationship between them by adding noise, manipulating background congruence and systematically occluding parts of the image. Results indicate that with an increase in network depth, there is an increase in the distinction between object- and background information. For more shallow networks, results indicated a benefit of training on segmented objects. Overall, these results indicate that, de facto, scene segmentation can be performed by a network of sufficient depth. We conclude that the human brain could perform scene segmentation in the context of object identification without an explicit mechanism, by selecting or “binding” features that belong to the object and ignoring other features, in a manner similar to a very deep convolutional neural network.


Author(s):  
Padmapriya Praveenkumar ◽  
Santhiyadevi R. ◽  
Amirtharajan R.

In this internet era, transferring and preservation of medical diagnostic reports and images across the globe have become inevitable for the collaborative tele-diagnosis and tele-surgery. Consequently, it is of prime importance to protect it from unauthorized users and to confirm integrity and privacy of the user. Quantum image processing (QIP) paves a way by integrating security algorithms in protecting and safeguarding medical images. This chapter proposes a quantum-assisted encryption scheme by making use of quantum gates, chaotic maps, and hash function to provide reversibility, ergodicity, and integrity, respectively. The first step in any quantum-related image communication is the representation of the classical image into quantum. It has been carried out using novel enhanced quantum representation (NEQR) format, where it uses two entangled qubit sequences to hoard the location and its pixel values of an image. The second step is performing transformations like confusion, diffusion, and permutation to provide an uncorrelated encrypted image.


2016 ◽  
pp. 28-56 ◽  
Author(s):  
Sanjay Chakraborty ◽  
Lopamudra Dey

Image processing on quantum platform is a hot topic for researchers now a day. Inspired from the idea of quantum physics, researchers are trying to shift their focus from classical image processing towards quantum image processing. Storing and representation of images in a binary and ternary quantum system is always one of the major issues in quantum image processing. This chapter mainly deals with several issues regarding various types of image representation and storage techniques in a binary as well as ternary quantum system. How image pixels can be organized and retrieved based on their positions and intensity values in 2-states and 3-states quantum systems is explained here in detail. Beside that it also deals with the topic that focuses on the clear filteration of images in quantum system to remove unwanted noises. This chapter also deals with those important applications (like Quantum image compression, Quantum edge detection, Quantum Histogram etc.) where quantum image processing associated with some of the natural computing techniques (like AI, ANN, ACO, etc.).


Sign in / Sign up

Export Citation Format

Share Document