scholarly journals Multi-mode Microscopic Hyperspectral Imager for the Sensing of Biological Samples

2020 ◽  
Vol 10 (14) ◽  
pp. 4876
Author(s):  
Zhanpeng Xu ◽  
Yiming Jiang ◽  
Sailing He

In this work, we develop a multi-mode microscopic hyperspectral imager (MMHI) for the detection of biological samples in transmission imaging, reflection imaging and fluorescence mode. A hyperspectral image cube can be obtained with 5 μm spatial resolution and 3 nm spectral resolution through push-broom line scanning. To avoid possible shadows produced by the high magnification objective with a short working distance, two illumination patterns are designed to ensure the co-axiality of the illumination and detection. Three experiments for the detection of zebrafish and fingerprints and the classification of disaster-causing microalgae verify the good capability and functionality of the system. Based on the detected spectra, we can observe the impacts of β-carotene and melanin in zebrafish, hemoglobin in the fingertip, and chlorophyll in microalgae, respectively. Multi-modes can be switched freely according to the application requirement and characteristics of different samples, like transmission mode for the transparent/translucent sample, reflection mode for the opaque sample and fluorescence mode for the fluorescent sample. The MMHI system also has strong potential for the non-invasive and high-speed sensing of bio or clinical samples.

Author(s):  
A. Yamada ◽  
A. Shibano ◽  
K. Harasawa ◽  
T. Kobayashi ◽  
H. Fukuda ◽  
...  

A newly developed digital scanning electron microscope, the JSM-6300, has the following features: Equipped with a narrower conical objective lens (OL), it allows high resolution images to be obtained easily at a short working distance (WD) and a large specimen tilt angle. In addition, it is provided with automatic functions and digital image processing functions for ease of operation.Conical C-F lens: The newly developed conical C-F objective lens, having low aberration characteristics over a wide WD range, allows a large-diameter (3-inch) specimen to be tilted up to 60° at short WD, and provides images with low magnifications starting at 10*. On the bottom of the lens, a p n junction type detector is provided to detect backscattered electrons (BE) from the specimen. As the narrower conical 0L increases the secondary electron (SE) detector's field intensity on the specimen surface, high SE image quality is obtained.


2021 ◽  
Vol 137 ◽  
pp. 106861
Author(s):  
Deepa Joshi ◽  
Ankit Butola ◽  
Sheetal Raosaheb Kanade ◽  
Dilip K. Prasad ◽  
S.V. Amitha Mithra ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jingjing Zhang ◽  
Luong T. H. Nguyen ◽  
Richard Hickey ◽  
Nicole Walters ◽  
Xinyu Wang ◽  
...  

AbstractExtracellular vesicles (EVs) derived from tumor cells have the potential to provide a much-needed source of non-invasive molecular biomarkers for liquid biopsies. However, current methods for EV isolation have limited specificity towards tumor-derived EVs that limit their clinical use. Here, we present an approach called immunomagnetic sequential ultrafiltration (iSUF) that consists of sequential stages of purification and enrichment of EVs in approximately 2 h. In iSUF, EVs present in different volumes of biofluids (0.5–100 mL) can be significantly enriched (up to 1000 times), with up to 99% removal of contaminating proteins (e.g., albumin). The EV recovery rate by iSUF for cell culture media (CCM), serum, and urine corresponded to 98.0% ± 3.6%, 96.0% ± 2.0% and 94.0% ± 1.9%, respectively (p > 0.05). The final step of iSUF enables the separation of tumor-specific EVs by incorporating immunomagnetic beads to target EV subpopulations. Serum from a cohort of clinical samples from metastatic breast cancer (BC) patients and healthy donors were processed by the iSUF platform and the isolated EVs from patients showed significantly higher expression levels of BC biomarkers (i.e., HER2, CD24, and miR21).


2009 ◽  
Vol 209 (5) ◽  
pp. 2585-2591 ◽  
Author(s):  
W.X. Tang ◽  
Q.H. Song ◽  
S.Q. Yu ◽  
S.S. Sun ◽  
B.B. Li ◽  
...  

2020 ◽  
Vol 22 (1) ◽  
pp. 214
Author(s):  
Michelle A. Fisher ◽  
Megan L. Lloyd

Since murine cytomegalovirus (MCMV) was first described in 1954, it has been used to model human cytomegalovirus (HCMV) diseases. MCMV is a natural pathogen of mice that is present in wild mice populations and has been associated with diseases such as myocarditis. The species-specific nature of HCMV restricts most research to cell culture-based studies or to the investigation of non-invasive clinical samples, which may not be ideal for the study of disseminated disease. Initial MCMV research used a salivary gland-propagated virus administered via different routes of inoculation into a variety of mouse strains. This revealed that the genetic background of the laboratory mice affected the severity of disease and altered the extent of subsequent pathology. The advent of genetically modified mice and viruses has allowed new aspects of disease to be modeled and the opportunistic nature of HCMV infection to be confirmed. This review describes the different ways that MCMV has been used to model HCMV diseases and explores the continuing difficulty faced by researchers attempting to model HCMV congenital cytomegalovirus disease using the mouse model.


Sign in / Sign up

Export Citation Format

Share Document