scholarly journals Global Warming Potentials Due to Railway Tunnel Construction and Maintenance

2020 ◽  
Vol 10 (18) ◽  
pp. 6459 ◽  
Author(s):  
Sakdirat Kaewunruen ◽  
Jessada Sresakoolchai ◽  
Shuonan Yu

Global warming is a critical issue nowadays. Although the railway system is considered as green transportation, it cannot be denied that railway tunnels have a significant environmental impact during construction and maintenance. At the same time, asset management of a project becomes more popular in project analysis. Therefore, this study aims to analyse life-cycle cost (LCC) and life-cycle assessment (LCA) for the Xikema No. 1 high-speed railway tunnel in China to consider the environmental impact of rail tunnel construction. The initial capital costs of tunnel and rail construction, operation, and maintenance costs have been separately considered in terms of the life-cycle cost analysis and net present value (NPV) with various discount rates. The LCA analysis has presented the CO2 emissions and energy consumption over the construction and operation processes into consideration. The CO2 emissions and energy consumption caused by material production, maintenance, and material transportation have been accounted for. The results show that the materials used during the construction process contribute to about 97.1% of CO2 emissions of the life-cycle while CO2 emissions caused by the operation and maintenance process are relatively small compared with the construction process. Moreover, the maintenance process consumes over 55% of the life-cycle energy. The energy consumption of the tunnel construction process is approximately 44.3%. At the same time, the construction contributes to the main proportion of LCC due to relatively low cost in the operation and maintenance stages.

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2195
Author(s):  
Belen Moreno Santamaria ◽  
Fernando del Ama Gonzalo ◽  
Matthew Griffin ◽  
Benito Lauret Aguirregabiria ◽  
Juan A. Hernandez Ramos

High initial costs hinder innovative technologies for building envelopes. Life Cycle Assessment (LCA) should consider energy savings to show relevant economic benefits and potential to reduce energy consumption and CO2 emissions. Life Cycle Cost (LCC) and Life Cycle Energy (LCE) should focus on investment, operation, maintenance, dismantling, disposal, and/or recycling for the building. This study compares the LCC and LCE analysis of Water Flow Glazing (WFG) envelopes with traditional double and triple glazing facades. The assessment considers initial, operational, and disposal costs and energy consumption as well as different energy systems for heating and cooling. Real prototypes have been built in two different locations to record real-world data of yearly operational energy. WFG systems consistently showed a higher initial investment than traditional glazing. The final Life Cycle Cost analysis demonstrates that WFG systems are better over the operation phase only when it is compared with a traditional double-glazing. However, a Life Cycle Energy assessment over 50 years concluded that energy savings between 36% and 66% and CO2 emissions reduction between 30% and 70% could be achieved.


2019 ◽  
Vol 12 (1) ◽  
pp. 206 ◽  
Author(s):  
Sakdirat Kaewunruen ◽  
Jessada Sresakoolchai ◽  
Junying Peng

The Beijing-Shanghai High-Speed Railway (HSR) is one of the most important railways in China, but it also has impacts on the economy and the environment while creating social benefits. This paper uses a life cycle assessment (LCA) method and a life cycle cost (LCC) analysis method to summarize the energy consumption, carbon emissions and costs of the Beijing-Shanghai HSR from the perspective of life cycle, and proposes some corresponding suggestions based on the results. The research objective of this paper is to analyse the carbon emissions, energy consumption, and costs of the rail system which includes the structure of the track and earthwork of the Beijing-Shanghai HSR during four stages: conception stage, construction stage, operation and maintenance stage, and disposal stage. It is concluded that the majority of the carbon emissions and energy consumption of the entire rail system are from the construction stage, accounting for 64.86% and 54.31% respectively. It is followed by the operation and maintenance stage with 31.60% and 35.32% respectively. In contrast, the amount of carbon emissions and energy consumption from the conception stage is too small to be considered. Furthermore, cement is the major contributor to the carbon emissions and energy consumption during the construction stage. As for the cost, the construction stage spends the largest amount of money (US$4614.00 million), followed by the operation and maintenance stage (US$910.61 million). Improving production technologies and choosing construction machinery are proposed to reduce the cost and protect the environment.


2018 ◽  
Author(s):  
Sierra Spencer ◽  
Malia Scott ◽  
Nelson Macken

Biofuels have received considerable attention as a more sustainable solution for heating applications. Used vegetable oil, normally considered a waste product, has been suggested as a possible candidate. Herein we perform a life cycle assessment to determine the environmental impact of using waste vegetable oil as a fuel. We present a cradle to fuel model that includes the following unit processes: soybean farming, soy oil refining, the cooking process, cleaning/drying waste oil, preheating the oil in a centralized heating facility and transportation when required. For soybean farming, national historical data for yields, energy required for machinery, fertilizers (nitrogen, phosphorous and potassium), herbicides, pesticides and nitrous oxide production are considered. In soy oil refining, steam production using natural gas and electricity for machinery are considered inputs. Preprocessing, extraction using hexane and post processing are considered. In order to determine a mass balance for the cooking operation, oil carryout and waste oil removal are estimated. During waste oil processing, oil is filtered and water removed. Data from GREET is used to compute global warming potential (GWP) and energy consumption in terms of cumulative energy demand (CED). Mass allocation is applied to the soy meal produced in refining and oil utilized for cooking. Results are discussed with emphasis on improving sustainability. A comparison is made to traditional fuels, e.g., commercial fuel oil and natural gas. The production of WVO as fuel has significantly less global warming potential but higher cumulative energy consumption than traditional fuels. The study should provide useful information on the sustainability of using waste cooking oil as a fuel for heating.


2021 ◽  
Author(s):  
Amir Fereidouni Kondri

This report presents the methodology for determining least cost energy efficient upgrade solutions in new residential housing using brute force sequential search (BFSS) method for integration into the reference house to reduce energy consumption while minimizing the net present value (NPV) of life cycle costs. The results showed that, based on the life cycle cost analysis of 30 years, the optimal upgrades resulted in the average of 19.25% (case 1), 31% (case 2a), and 21% (case 2b) reduction in annual energy consumption. Economic conditions affect the sequencing of the upgrades. In this respect the preferred upgrades to be performed in order are; domestic hot water heating, above grade wall insulation, cooling systems, ceiling insulation, floor insulation, heat recovery ventilator, basement slab insulation and below grade wall insulation. When the gas commodity pricing becomes high, the more energy efficient upgrades for domestic hot water (DHW) get selected at a cost premium.


2018 ◽  
Vol 61 (6) ◽  
pp. 1795-1810
Author(s):  
James Bambara ◽  
Andreas K. Athienitis

Abstract. The energy consumption of a building is significantly impacted by its envelope design, particularly for greenhouses where coverings typically provide high heat and daylight transmission. Energy and life cycle cost (LCC) analysis were used to identify the most cost-effective cladding design for a greenhouse located in Ottawa, Ontario, Canada (45.4° N) that employs supplemental lighting. The base case envelope design uses single glazing, whereas the two alternative designs consist of replacing the glass with twin-wall polycarbonate and adding foil-faced rigid insulation (permanent or movable) on the interior surface of the glass. All the alternative envelope designs increased electricity consumption for lighting and decreased heating energy use except when permanent or movable insulation was applied to the north wall and in the case of permanent insulation on the north wall plus polycarbonate on the east wall. This demonstrates how the use of reflective opaque insulation on the north wall can be beneficial for redirecting light onto the crops to achieve simultaneous reductions in electricity and heating energy costs. A maximum reduction in LCC of 5.5% (net savings of approximately $130,000) was achieved when permanent insulation was applied to the north and east walls plus polycarbonate on the west wall. This alternative envelope design increased electricity consumption for horticultural lighting by 4.3%, reduced heating energy use by 15.6%, and caused greenhouse gas emissions related to energy consumption to decrease by 14.7%. This analysis demonstrates how energy and economic analysis can be employed to determine the most suitable envelope design based on local climate and economic conditions. Keywords: Artificial lighting, Consistent daily light integral, Energy modeling, Envelope design, Greenhouse, Life cycle cost analysis, Light emitting diode, Local agriculture.


2020 ◽  
Vol 164 ◽  
pp. 01002
Author(s):  
Svetlana Maksimova ◽  
Anna Shkileva ◽  
Ekaterina Verevkina

The main goal of this study is evaluation of reconstruction options for water pumping stations, regarding various factors (equipment purchase cost, maintenance, energy consumption). The search for the most profitable solution was carried out using the life cycle cost methodology for the urban water supply system’s first lift pump station. An analysis of the operating modes of the pumping station was carried out using curves of pumps and system. It was found that the option with a higher purchase price has the best technological indicators, including energy consumption. The expediency of the complete replacement of pumping equipment is confirmed by an analysis of life cycle costs.


Author(s):  
M Scherz ◽  
D Fruhwirt ◽  
M Bacher ◽  
H Steiner ◽  
A Passer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document