scholarly journals Identification of Risk Factors and Machine Learning-Based Prediction Models for Knee Osteoarthritis Patients

2020 ◽  
Vol 10 (19) ◽  
pp. 6797
Author(s):  
Christos Kokkotis ◽  
Serafeim Moustakidis ◽  
Giannis Giakas ◽  
Dimitrios Tsaopoulos

Knee Osteoarthritis (KOA) is a multifactorial disease that causes low quality of life, poor psychology and resignation from life. Furthermore, KOA is a big data problem in terms of data complexity, heterogeneity and size as it has been commonly considered in the literature with most of the reported studies being limited in the amount of information they can adequately process. The aim of this paper is: (i) To provide a robust feature selection (FS) approach that could identify important risk factors which contribute to the prediction of KOA and (ii) to develop machine learning (ML) prediction models for KOA. The current study considers multidisciplinary data from the osteoarthritis initiative (OAI) database, the available features of which come from heterogeneous sources such as questionnaire data, physical activity indexes, self-reported data about joint symptoms, disability and function as well as general health and physical exams’ data. The novelty of the proposed FS methodology lies on the combination of different well-known approaches including filter, wrapper and embedded techniques, whereas feature ranking is decided on the basis of a majority vote scheme to avoid bias. The validation of the selected factors was performed in data subgroups employing seven well-known classifiers in five different approaches. A 74.07% classification accuracy was achieved by SVM on the group of the first fifty-five selected risk factors. The effectiveness of the proposed approach was evaluated in a comparative analysis with respect to classification errors and confusion matrices to confirm its clinical relevance. The results are the basis for the development of reliable tools for the prediction of KOA progression.

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1337.2-1337
Author(s):  
T. W. Swinnen ◽  
M. Willems ◽  
I. Jonkers ◽  
F. P. Luyten ◽  
J. Vanrenterghem ◽  
...  

Background:The personal and societal burden of knee osteoarthritis (KOA) urges the research community to identify factors that predict its onset and progression. A mechanistic understanding of disease is currently lacking but needed to develop targeted interventions. Traditionally, risk factors for KOA are termed ‘local’ to the joint or ‘systemic’ referring to whole-body systems. There are however clear indications in the scientific literature that contextual factors such as socioeconomic position merit further scientific scrutiny, in order to justify a more biopsychosocial view on risk factors in KOA.Objectives:The aims of this systematic literature review were to assess the inclusion of socioeconomic factors in KOA research and to identify the impact of socioeconomic factors on pain and function in KOA.Methods:Major bibliographic databases, namely Medline, Embase, CINAHL, Web of Science and Cochrane, were independently screened by two reviewers (plus one to resolve conflicts) to identify research articles dealing with socioeconomic factors in the KOA population without arthroplasty. Included studies had to quantify the relationship between socioeconomic factors and pain or function. Main exclusion criteria were: a qualitative design, subject age below 16 years and articles not written in English or Dutch. Methodological quality was assessed via the Cochrane risk of bias tools for randomized (ROB-II) and non-randomized intervention studies (ROBIN-I) and the Newcastle-Ottawa Scale for assessing the quality of non-randomised studies. Due to heterogeneity of studies with respect to outcomes assessed and analyses performed, no meta-analysis was performed.Results:Following de-duplication, 7639 articles were available for screening (120 conflicts resolved without a third reader). In 4112 articles, the KOA population was confirmed. 1906 (25%) were excluded because of knee arthroplasty and 1621 (21%) because of other issues related to the population definition. Socioeconomic factors could not be identified in 4058 (53%) papers and were adjusted for in 211 (3%) articles. In the remaining papers covering pain (n=110) and/or function (n=81), education (62%) and race (37%) were most frequently assessed as socioeconomic factors. A huge variety of mainly dichotomous or ordinal socioeconomic outcomes was found without further methodological justification nor sensitivity analysis to unravel the impact of selected categories. Although the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) was the most popular instrument to assess pain and function, data pooling was not possible as socioeconomic factors estimates were part of multilevel models in most studies. Overall results showed that lower education and African American race were consistent predictors of pain and poor function, but those effects diminished or disappeared when psychological aspects (e.g. discrimination) or poverty estimates were taken into account. When function was assessed using self-reported outcomes, the impact of socioeconomic factors was more clear versus performance-based instruments. Quality of research was low to moderate and the moderating or mediating impact of socioeconomic factors on intervention effects in KOA is understudied.Conclusion:Research on contextual socioeconomic factors in KOA is insufficiently addressed and their assessment is highly variable methodologically. Following this systematic literature review, we can highlight the importance of implementing a standardised and feasible set of socioeconomic outcomes in KOA trials1, as well as the importance of public availability of research databases including these factors. Future research should prioritise the underlying mechanisms in the effect of especially education and race on pain and function and assess its impact on intervention effects to fuel novel (non-)pharmacological approaches in KOA.References:[1]Smith TO et al. The OMERACT-OARSI Core Domain Set for Measurement in Clinical Trials of Hip and/or Knee Osteoarthritis J Rheumatol 2019. 46:981–9.Disclosure of Interests:None declared.


Author(s):  
Jeffrey B. Driban ◽  
Timothy E. McAlindon ◽  
Mamta Amin ◽  
Lori L. Price ◽  
Charles B. Eaton ◽  
...  

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Matthew W Segar ◽  
Byron Jaeger ◽  
Kershaw V Patel ◽  
Vijay Nambi ◽  
Chiadi E Ndumele ◽  
...  

Introduction: Heart failure (HF) risk and the underlying biological risk factors vary by race. Machine learning (ML) may improve race-specific HF risk prediction but this has not been fully evaluated. Methods: The study included participants from 4 cohorts (ARIC, DHS, JHS, and MESA) aged > 40 years, free of baseline HF, and with adjudicated HF event follow-up. Black adults from JHS and white adults from ARIC were used to derive race-specific ML models to predict 10-year HF risk. The ML models were externally validated in subgroups of black and white adults from ARIC (excluding JHS participants) and pooled MESA/DHS cohorts and compared to prior established HF risk scores developed in ARIC and MESA. Harrell’s C-index and Greenwood-Nam-D’Agostino chi-square were used to assess discrimination and calibration, respectively. Results: In the derivation cohorts, 288 of 4141 (7.0%) black and 391 of 8242 (4.7%) white adults developed HF over 10 years. The ML models had excellent discrimination in both black and white participants (C-indices = 0.88 and 0.89). In the external validation cohorts for black participants from ARIC (excluding JHS, N = 1072) and MESA/DHS pooled cohorts (N = 2821), 131 (12.2%) and 115 (4.1%) developed HF. The ML model had adequate calibration and demonstrated superior discrimination compared to established HF risk models (Fig A). A consistent pattern was also observed in the external validation cohorts of white participants from the MESA/DHS pooled cohorts (N=3236; 100 [3.1%] HF events) (Fig A). The most important predictors of HF in both races were NP levels. Cardiac biomarkers and glycemic parameters were most important among blacks while LV hypertrophy and prevalent CVD and traditional CV risk factors were the strongest predictors among whites (Fig B). Conclusions: Race-specific and ML-based HF risk models that integrate clinical, laboratory, and biomarker data demonstrated superior performance when compared to traditional risk prediction models.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Georgios Kantidakis ◽  
Hein Putter ◽  
Carlo Lancia ◽  
Jacob de Boer ◽  
Andries E. Braat ◽  
...  

Abstract Background Predicting survival of recipients after liver transplantation is regarded as one of the most important challenges in contemporary medicine. Hence, improving on current prediction models is of great interest.Nowadays, there is a strong discussion in the medical field about machine learning (ML) and whether it has greater potential than traditional regression models when dealing with complex data. Criticism to ML is related to unsuitable performance measures and lack of interpretability which is important for clinicians. Methods In this paper, ML techniques such as random forests and neural networks are applied to large data of 62294 patients from the United States with 97 predictors selected on clinical/statistical grounds, over more than 600, to predict survival from transplantation. Of particular interest is also the identification of potential risk factors. A comparison is performed between 3 different Cox models (with all variables, backward selection and LASSO) and 3 machine learning techniques: a random survival forest and 2 partial logistic artificial neural networks (PLANNs). For PLANNs, novel extensions to their original specification are tested. Emphasis is given on the advantages and pitfalls of each method and on the interpretability of the ML techniques. Results Well-established predictive measures are employed from the survival field (C-index, Brier score and Integrated Brier Score) and the strongest prognostic factors are identified for each model. Clinical endpoint is overall graft-survival defined as the time between transplantation and the date of graft-failure or death. The random survival forest shows slightly better predictive performance than Cox models based on the C-index. Neural networks show better performance than both Cox models and random survival forest based on the Integrated Brier Score at 10 years. Conclusion In this work, it is shown that machine learning techniques can be a useful tool for both prediction and interpretation in the survival context. From the ML techniques examined here, PLANN with 1 hidden layer predicts survival probabilities the most accurately, being as calibrated as the Cox model with all variables. Trial registration Retrospective data were provided by the Scientific Registry of Transplant Recipients under Data Use Agreement number 9477 for analysis of risk factors after liver transplantation.


2016 ◽  
Vol 24 ◽  
pp. S204-S205
Author(s):  
J.B. Driban ◽  
L.L. Price ◽  
C.B. Eaton ◽  
J. Lynch ◽  
M. Nevitt ◽  
...  

Author(s):  
Matthew W. Segar ◽  
Byron C. Jaeger ◽  
Kershaw V. Patel ◽  
Vijay Nambi ◽  
Chiadi E. Ndumele ◽  
...  

Background: Heart failure (HF) risk and the underlying risk factors vary by race. Traditional models for HF risk prediction treat race as a covariate in risk prediction and do not account for significant parameters such as cardiac biomarkers. Machine learning (ML) may offer advantages over traditional modeling techniques to develop race-specific HF risk prediction models and elucidate important contributors of HF development across races. Methods: We performed a retrospective analysis of four large, community cohort studies (ARIC, DHS, JHS, and MESA) with adjudicated HF events. Participants were aged >40 years and free of HF at baseline. Race-specific ML models for HF risk prediction were developed in the JHS cohort (for Black race-specific model) and White adults from ARIC (for White rate-specific model). The models included 39 candidate variables across demographic, anthropometric, medical history, laboratory, and electrocardiographic domains. The ML models were externally validated and compared with prior established traditional and non-race specific ML models in race-specific subgroups of the pooled MESA/DHS cohort and Black participants of ARIC. Harrell's C-index and Greenwood-Nam-D'Agostino chi-square tests were used to assess discrimination and calibration, respectively. Results: The ML models had excellent discrimination in the derivation cohorts for Black (N=4,141 in JHS, C-index=0.88) and White (N=7,858 in ARIC, C-index=0.89) participants. In the external validation cohorts, the race-specific ML model demonstrated adequate calibration and superior discrimination (C-indices=0.80-0.83 [for Black individuals] and 0.82 [for White individuals]) compared with established HF risk models or with non-race specific ML models derived using race as a covariate. Among the risk factors, natriuretic peptide levels were the most important predictor of HF risk across both races, followed by troponin levels in Black and EKG-based Cornell voltage in White individuals. Other key predictors of HF risk among Black individuals were glycemic parameters and socioeconomic factors. In contrast, prevalent cardiovascular (CV) disease and traditional CV risk factors were stronger predictors of HF risk in White adults. Conclusions: Race-specific and ML-based HF risk models that integrate clinical, laboratory, and biomarker data demonstrated superior performance when compared with traditional HF risk and non-race specific ML models. This approach identifies distinct race-specific contributors of HF.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jie Liu ◽  
Jian Zhang ◽  
Haodong Huang ◽  
Yunting Wang ◽  
Zuyue Zhang ◽  
...  

Objective: We explored the risk factors for intravenous immunoglobulin (IVIG) resistance in children with Kawasaki disease (KD) and constructed a prediction model based on machine learning algorithms.Methods: A retrospective study including 1,398 KD patients hospitalized in 7 affiliated hospitals of Chongqing Medical University from January 2015 to August 2020 was conducted. All patients were divided into IVIG-responsive and IVIG-resistant groups, which were randomly divided into training and validation sets. The independent risk factors were determined using logistic regression analysis. Logistic regression nomograms, support vector machine (SVM), XGBoost and LightGBM prediction models were constructed and compared with the previous models.Results: In total, 1,240 out of 1,398 patients were IVIG responders, while 158 were resistant to IVIG. According to the results of logistic regression analysis of the training set, four independent risk factors were identified, including total bilirubin (TBIL) (OR = 1.115, 95% CI 1.067–1.165), procalcitonin (PCT) (OR = 1.511, 95% CI 1.270–1.798), alanine aminotransferase (ALT) (OR = 1.013, 95% CI 1.008–1.018) and platelet count (PLT) (OR = 0.998, 95% CI 0.996–1). Logistic regression nomogram, SVM, XGBoost, and LightGBM prediction models were constructed based on the above independent risk factors. The sensitivity was 0.617, 0.681, 0.638, and 0.702, the specificity was 0.712, 0.841, 0.967, and 0.903, and the area under curve (AUC) was 0.731, 0.814, 0.804, and 0.874, respectively. Among the prediction models, the LightGBM model displayed the best ability for comprehensive prediction, with an AUC of 0.874, which surpassed the previous classic models of Egami (AUC = 0.581), Kobayashi (AUC = 0.524), Sano (AUC = 0.519), Fu (AUC = 0.578), and Formosa (AUC = 0.575).Conclusion: The machine learning LightGBM prediction model for IVIG-resistant KD patients was superior to previous models. Our findings may help to accomplish early identification of the risk of IVIG resistance and improve their outcomes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bum-Joo Cho ◽  
Kyoung Min Kim ◽  
Sanchir-Erdene Bilegsaikhan ◽  
Yong Joon Suh

Abstract Febrile neutropenia (FN) is one of the most concerning complications of chemotherapy, and its prediction remains difficult. This study aimed to reveal the risk factors for and build the prediction models of FN using machine learning algorithms. Medical records of hospitalized patients who underwent chemotherapy after surgery for breast cancer between May 2002 and September 2018 were selectively reviewed for development of models. Demographic, clinical, pathological, and therapeutic data were analyzed to identify risk factors for FN. Using machine learning algorithms, prediction models were developed and evaluated for performance. Of 933 selected inpatients with a mean age of 51.8 ± 10.7 years, FN developed in 409 (43.8%) patients. There was a significant difference in FN incidence according to age, staging, taxane-based regimen, and blood count 5 days after chemotherapy. The area under the curve (AUC) built based on these findings was 0.870 on the basis of logistic regression. The AUC improved by machine learning was 0.908. Machine learning improves the prediction of FN in patients undergoing chemotherapy for breast cancer compared to the conventional statistical model. In these high-risk patients, primary prophylaxis with granulocyte colony-stimulating factor could be considered.


Sign in / Sign up

Export Citation Format

Share Document