scholarly journals Sensitivity and Calibration of the FT-IR Spectroscopy on Concentration of Heavy Metal Ions in River and Borehole Water Sources

2020 ◽  
Vol 10 (21) ◽  
pp. 7785
Author(s):  
Matthew Mamera ◽  
Johan J. van Tol ◽  
Makhosazana P. Aghoghovwia ◽  
Elmarie Kotze

Heavy metals in water sources can threaten human life and the environment. The analysis time, need for chemical reagents, and sample amount per analysis assist in monitoring contaminants. Application of the Fourier Transform Infrared (FT-IR) Spectroscopy for the investigation of heavy metal elements has significantly developed due to its cost effectiveness and accuracy. Use of chemometric models such as Partial Least Square (PLS) and Principle Component Regression Analysis (PCA) relate the multiple spectral intensities from numerous calibration samples to the recognized analytes. This study focused on the FT-IR calibration and quantification of heavy metals (Ag, Cd, Cu, Pb and Zn) in surveyed water sources. FT-IR measurements were compared with the atomic absorption spectrometer (AAS) measurements. Quantitative analysis methods, PCA and PLS, were used in the FT-IR calibration. The spectral analyses were done using the Attenuated Total Reflectance (ATR-FTIR) technique on three river and four borehole water sources sampled within two seasons in QwaQwa, South Africa (SA). The PLS models had good R2 values ranging from 0.95 to 1 and the PCA models ranged from 0.98 to 0.99. Significant differences were seen at 0.001 and 0.05 levels between the PLS and PCA models for detecting Cd and Pb in the water samples. The PCA models detected Ag concentrations more (˂0 mg L−1 on selected sites). Both the PLS and PCA models had lower detection only for Zn ions mostly above 45 mg L−1 deviating from the AAS measurements (<0.020 mg L−1). The FT-IR spectroscopy demonstrated good potential for heavy metal determination purposes.

Foods ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 143 ◽  
Author(s):  
Sagar Dhakal ◽  
Walter F. Schmidt ◽  
Moon Kim ◽  
Xiuying Tang ◽  
Yankun Peng ◽  
...  

Yellow turmeric (Curcuma longa) is widely used for culinary and medicinal purposes, and as a dietary supplement. Due to the commercial popularity of C. longa, economic adulteration and contamination with botanical additives and chemical substances has increased. This study used FT-IR spectroscopy for identifying and estimating white turmeric (Curcuma zedoaria), and Sudan Red G dye mixed with yellow turmeric powder. Fifty replicates of yellow turmeric—Sudan Red mixed samples (1%, 5%, 10%, 15%, 20%, 25% Sudan Red, w/w) and fifty replicates of yellow turmeric—white turmeric mixed samples (10%, 20%, 30%, 40%, 50% white turmeric, w/w) were prepared. The IR spectra of the pure compounds and mixtures were analyzed. The 748 cm−1 Sudan Red peak and the 1078 cm−1 white turmeric peak were used as spectral fingerprints. A partial least square regression (PLSR) model was developed for each mixture type to estimate adulteration concentrations. The coefficient of determination (R2v) for the Sudan Red mixture model was 0.97 with a root mean square error of prediction (RMSEP) equal to 1.3%. R2v and RMSEP for the white turmeric model were 0.95 and 3.0%, respectively. Our results indicate that the method developed in this study can be used to identify and quantify yellow turmeric powder adulteration.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Pengjuan Liang ◽  
Hao Wang ◽  
Chaoyin Chen ◽  
Feng Ge ◽  
Diqiu Liu ◽  
...  

Currently, the authentication of virgin walnut oil (VWO) has become very important due to the possible adulteration of VWO with cheaper plant oils such as soybean oil (SO), puer tea seed oil (PO), and sunflower oil (SFO). Methods involving Fourier transform infrared (FT-IR) spectroscopy combined with chemometric techniques (partial least square) were developed for quantification of SO, PO, and SFO in VWO. IR spectra of oil samples were recorded at frequency regions of 4000–650 cm−1on horizontal attenuated total reflectance (HATR) attachment of FT-IR. PLS model correlates the actual and FT-IR estimated values of oil adulterants (SO, PO, and SFO) with coefficients of determination (R2) of 0.9958, 0.9925, and 0.9952, respectively. The obtained RMSEC values of SO, PO, and SFO in VWO are 1.35%, 1.85%, and 1.43% (v/v), respectively. The method, therefore, has potential as a rapid method for quantification of product adulteration.


2019 ◽  
Vol 65 (9) ◽  
pp. 629-641 ◽  
Author(s):  
Xinhui Deng ◽  
Zhihui Yang ◽  
Runhua Chen

Penicillium chrysogenum F1 is very efficient in bioleaching heavy metals from the soil and is used for that purpose. We found that F1 can extract 19.8 mg Cd, Cu, Pb, and Zn from 2.5 g soil; the total heavy metals’ bioleaching ratio was 60.4%. In this study, the bioleaching mechanism was investigated by means of metabonomics; different metabolite ions were screened (relative standard deviation >30%) and analyzed using clustering, univariate and multivariate analysis. Statistical analyses via Volcano Plot, principal component analysis, and partial least square discriminant analysis models revealed a difference between Ctrl 7 (the controls cultured and sampled on day 7) and Ctrl 15 (the controls cultured and sampled on day 15). Samp 15 (the samples cultured with heavy-metal-contaminated soil) was significantly different from Ctrl 7 and Ctrl 15. Analysis of the different ions demonstrated that the glucose catabolism pathways of glycolysis and the tricarboxylic acid (TCA) cycle were enhanced, and glucose anabolism through the pentose phosphate pathway was inhibited during bioleaching. At the same time, the metabolism of glutathione was also downregulated. Therefore, the catabolism of glucose was unaffected by the addition of heavy-metal-contaminated soil, and increasing glucose is beneficial to catabolism. The extraction of metals is mainly attributed to the metabolites of the TCA cycle.


Author(s):  
Maciej Strzempek ◽  
Karolina A. Tarach ◽  
Kinga Góra-Marek ◽  
Fernando Rey ◽  
Miguel Palomino ◽  
...  

Abstract In this article the results of the statistical MC modelling corroborated by the FT-IR spectroscopy and gravimetric adsorption studies of the low aliphatic hydrocarbons in ZSM-5 (Si/Al =28 or...


Sign in / Sign up

Export Citation Format

Share Document