scholarly journals Hybrid LLC Converter with Wide Range of Zero-Voltage Switching and Wide Input Voltage Operation

2020 ◽  
Vol 10 (22) ◽  
pp. 8250
Author(s):  
Bor-Ren Lin ◽  
Kun-Yi Chen

A new hybrid inductor-inductor-capacitor (LLC) converter is investigated to have wide voltage input operation capability and zero-voltage turn-on characteristics. The presented circuit topology can be applied for consumer power units without power factor correction or with long hold-up time requirement, photovoltaic energy conversion and renewable energy power transfer. To overcome the weakness of narrow voltage gain of resonant converter, the hybrid LLC converter with different turns ratio of transformer is presented and the experimental investigation is provided to achieve wide voltage input capability (400 V–50 V). On the input-side, the converter can operate as full bridge resonant circuit or half bridge resonant circuit with input split capacitors for high or low voltage input region. On the output-side, the less or more winding turns is selected to overcome wide voltage input operation. According to the circuit structures and transformer turns ratio, the single stage LLC converter with wide voltage input operation capability (400 V–50 V) is accomplished. The laboratory prototype has been developed and the experimental waveforms are measured and demonstrated to investigate the effectiveness of the presented hybrid LLC converter.

Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1931
Author(s):  
Bor-Ren Lin ◽  
Yen-Chun Liu

A new circuit structure of LLC converter is studied and implemented to achieve wide zero-voltage switching range and wide voltage operation such as consumer power units without power factor correction and long hold up time demand, battery chargers, photovoltaic converters and renewable power electronic converters. The dc converter with the different secondary winding turns is adopted and investigated to achieve the wide input voltage operation (50–400 V). To meet wide voltage operation, the full bridge and half bridge dc/dc converters with different secondary turns can be selected in the presented circuit to have three different voltage gains. According to input voltage range, the variable frequency scheme is employed to have the variable voltage gain to overcome the wide input voltage operation. Therefore, the wide soft switching load variation and wide voltage operation range are achieved in the presented resonant circuit. The prototype circuit is built and tested and the experiments are demonstrated to investigate the circuit performance.


2017 ◽  
Vol 26 (06) ◽  
pp. 1750090
Author(s):  
B. R. Lin

A new DC/DC converter integrating a full-bridge circuit and a half-bridge pulse-width circuit is studied to realize the advantages of a wide range of zero-voltage switching (ZVS) and less circulating current loss. A half-bridge converter is connected to power switches on the lagging-leg of full-bridge converter to achieve a wider range of ZVS to overcome the disadvantage of narrow ZVS range in conventional full-bridge converter. The output side of half-bridge circuit is linked to the secondary side of the full-bridge converter to decrease the primary circulating current of the full-bridge converter. Therefore, the conduction losses due to the high circulating current in conventional full-bridge converter are reduced. The theoretical analysis is discussed in detail and the effectiveness of the proposed converter is verified by the experimental verifications with a 1440[Formula: see text]W prototype.


2020 ◽  
Vol 10 (13) ◽  
pp. 4672 ◽  
Author(s):  
Bor-Ren Lin ◽  
Guan-Hong Lin

A soft switching current-source resonant converter is presented and implemented for wide voltage applications such as fuel cells and solar power. An LLC (inductor–inductor–capacitor) converter is adopted to accomplish zero voltage (current) operation on active switches (diodes). Thus, the circuit efficiency is increased. The interleaved pulse-width modulation (PWM) converter is employed on the input side to accomplish low input ripple current. A hybrid LLC converter is adopted to achieve wide voltage operation from Vin, min to 4Vin, min and to improve the weakness of a conventional LLC converter. Half-bridge diode rectification is employed on the output side to decrease power loss on the rectifier diode. To confirm the theoretical analysis and feasibility, experimental verifications with a 500-W prototype are demonstrated in this paper.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1634
Author(s):  
Bor-Ren Lin ◽  
Ji-Wei Chang

A three-leg pulse-width modulation converter with auxiliary windings is provided and investigated to realize wide voltage operation and zero voltage switching characteristics on power switches. The presented converter has three converter legs on the input-side and two sets of winding turns on the output-side. Owing to the on/off states of the three converter legs and the two sets of secondary winding turns, the proposed converter can be operated under three different equivalent circuits to have wide input voltage operation from 30V ~ 240V (Vin,max = 8Vin,min). Compared with the multi-stage converters to realize wide input voltage operation, the proposed circuit topology has fewer circuit components and a simple control algorithm. Conventional duty cycle control with phase-shift between each converter leg is adopted to regulate load voltage and also accomplish zero voltage switching on active switches. The presented three-leg converter is tested with a laboratory circuit. Finally, experiments testify to the performance and validity of the presented converter.


2020 ◽  
Vol 8 (5) ◽  
pp. 5338-5345

This paper presents a non-isolated bidirectional softswitching dc-dc converter for DC microgrid energy storage synchronization. To assist the soft switching of switches and diodes, the LCL resonant circuit is applied and an input end halfbridge boost converter is enforced. Using the voltage doubler circuit introduced on the output side, a voltage gain of 2X is achieved. Through the non-isolated circuit, the total voltage gain is obtained. The capacitive divider halves the voltage on the greater hand. The circuit performs a high frequency ripple of low output voltage. Diodes guarantee zero voltage Turn ON for switches and zero current turn ON and turn OFF during buck / boost operation Although no internal snubber circuits are available, the circuit ensures low voltage stress across semiconductor systems.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2536
Author(s):  
Bor-Ren Lin ◽  
Yi-Kuan Lin

A full-bridge converter with an additional resonant circuit and variable secondary turns is presented and achieved to have soft-switching operation on active devices, wide voltage input operation and low freewheeling current loss. The resonant tank is linked to the lagging-leg of the full bridge pulse-width modulation converter to realize zero-voltage switching (ZVS) characteristic on the power switches. Therefore, the wide ZVS operation can be accomplished in the presented circuit over the whole input voltage range and output load. To overcome the wide voltage variation on renewable energy applications such as DC wind power and solar power conversion, two winding sets are used on the output-side of the proposed converter to obtain the different voltage gains. Therefore, the wide voltage input from 90 to 450 V (Vin,max = 5Vin,min) is implemented in the presented circuit. To further improve the freewheeling current loss issue in the conventional phase-shift pulse-width modulation converter, an auxiliary DC voltage generated from the resonant circuit is adopted to reduce this freewheeling current loss. Compared to the multi-stage DC converters with wide input voltage range operation, the proposed circuit has a low freewheeling current loss, low switching loss and a simple control algorithm. The studied circuit is tested and the experimental results are demonstrated to testify the performance of the resented circuit.


Interleaved Boost Full Bridge integrated LLC resonant (IBFB- LLC) is an isolated DC/DC converter with directional power flow, which can cope with a wide input voltage range of PV applications. The main losses of the converter are switching losses of the power switches and transformers losses. This paper proposes a method to improve the efficiency of the IBFB converter due to zero voltage switching technique, in combination with employing new SiC MOSFET technology instead of the conventional Si MOSFET. In addition, Litz wire is also adopted to reduce the losses on the high frequency isolation transformer. Both numerical simulations and experiments with a prototype 2.5kW converter are implemented to verify the feasibility and effectiveness of the proposed solution.


Sign in / Sign up

Export Citation Format

Share Document