scholarly journals A Statistical Estimation of 5G Massive MIMO Networks’ Exposure Using Stochastic Geometry in mmWave Bands

2020 ◽  
Vol 10 (23) ◽  
pp. 8753
Author(s):  
Maarouf Al Hajj ◽  
Shanshan Wang ◽  
Lam Thanh Tu ◽  
Soumaya Azzi ◽  
Joe Wiart

This paper aims to derive an analytical modelling of the downlink exposure in 5G massive Multiple Input Multiple Output (MIMO) antenna networks using stochastic geometry. The Poisson point process (PPP) is assumed for base station (BS) distribution. The power received at the transmitter is modeled as a shot-noise process with a modified power law. The distributions of 5G massive MIMO antenna gain and channel gain were obtained by fitting simulation results from the NYUSIM channel simulator. The fitted distributions, e.g., exponential and gamma distribution for antenna and channel gain respectively, were then implemented into an analytical framework. In this paper, we obtained the closed-form expression of the moment-generating function (MGF) for the total exposure in the network. The framework is then validated by numerical simulations. The sensitivity analysis is carried out to investigate the impact of key parameters, e.g., BS density, path loss exponent, and transmission probability. We then proved and quantified the significant impact the transmission probability on global exposure, which indicates the importance of considering the network usage in 5G exposure estimations.

2021 ◽  
Author(s):  
Jie Ding ◽  
Bassel Al Homssi ◽  
Jinho Choi

<p>Cell-free (CF) massive multiple-input multiple-output (MIMO), as a promising network architecture for beyond the fifth generation (5G), has a great potential to support grant-free (GF) transmission for machine-type communication (MTC). To shed light on this subject, this work aims to model and evaluate the performance of GF transmission in CF massive MIMO under a realistic network deployment scenario, where the spatial locations of both access points (APs) and devices are assumed to be random in nature. In particular, by capitalizing on the distinctive CF network architecture and features, we design a new two-disk based geometric model for GF transmission, which facilitates analysis and understanding in CF massive MIMO. Based on the proposed two-disk model, we derive an approximated closed-form expression for the access success probability by leveraging on techniques from stochastic geometry, and investigate the impact of different key system parameters on the network performance. To highlight the performance superiority of CF massive MIMO, we further provide a comparative analysis by using an analogous single-disk model in an equivalent co-located massive MIMO network. Simulation results verify our analysis and demonstrate that CF massive MIMO is able to significantly outperform its co-located counterpart in terms of access success probability and provide robust performance against increased access density, which well suits to crowd scenarios.</p>


2021 ◽  
Author(s):  
Jie Ding ◽  
Bassel Al Homssi ◽  
Jinho Choi

<p>Cell-free (CF) massive multiple-input multiple-output (MIMO), as a promising network architecture for beyond the fifth generation (5G), has a great potential to support grant-free (GF) transmission for machine-type communication (MTC). To shed light on this subject, this work aims to model and evaluate the performance of GF transmission in CF massive MIMO under a realistic network deployment scenario, where the spatial locations of both access points (APs) and devices are assumed to be random in nature. In particular, by capitalizing on the distinctive CF network architecture and features, we design a new two-disk based geometric model for GF transmission, which facilitates analysis and understanding in CF massive MIMO. Based on the proposed two-disk model, we derive an approximated closed-form expression for the access success probability by leveraging on techniques from stochastic geometry, and investigate the impact of different key system parameters on the network performance. To highlight the performance superiority of CF massive MIMO, we further provide a comparative analysis by using an analogous single-disk model in an equivalent co-located massive MIMO network. Simulation results verify our analysis and demonstrate that CF massive MIMO is able to significantly outperform its co-located counterpart in terms of access success probability and provide robust performance against increased access density, which well suits to crowd scenarios.</p>


2017 ◽  
Vol 63 (1) ◽  
pp. 79-84
Author(s):  
M. K Noor Shahida ◽  
Rosdiadee Nordin ◽  
Mahamod Ismail

Abstract Energy Efficiency (EE) is becoming increasingly important for wireless communications and has caught more attention due to steadily rising energy costs and environmental concerns. Recently, a new network architecture known as Massive Multiple-Input Multiple-Output (MIMO) has been proposed with the remarkable potential to achieve huge gains in EE with simple linear processing. In this paper, a power allocation algorithm is proposed for EE to achieve the optimal EE in Massive MIMO. Based on the simplified expression, we develop a new algorithm to compute the optimal power allocation algorithm and it has been compared with the existing scheme from the previous literature. An improved water filling algorithm is proposed and embedded in the power allocation algorithm to maximize EE and Spectral Efficiency (SE). The numerical analysis of the simulation results indicates an improvement of 40% in EE and 50% in SE at the downlink transmission, compared to the other existing schemes. Furthermore, the results revealed that SE does not influence the EE enhancement after using the proposed algorithm as the number of Massive MIMO antenna at the Base Station (BS) increases.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ajay Kumar Yadav ◽  
Pritam Keshari Sahoo ◽  
Yogendra Kumar Prajapati

Abstract Orthogonal frequency division multiplexing (OFDM) based massive multiuser (MU) multiple input multiple output (MIMO) system is popularly known as high peak-to-average power ratio (PAPR) issue. The OFDM-based massive MIMO system exhibits large number of antennas at Base Station (BS) due to the use of large number of high-power amplifiers (HPA). High PAPR causes HPAs to work in a nonlinear region, and hardware cost of nonlinear HPAs are very high and also power inefficient. Hence, to tackle this problem, this manuscript suggests a novel scheme based on the joint MU precoding and PAPR minimization (PP) expressed as a convex optimization problem solved by steepest gradient descent (GD) with μ-law companding approach. Therefore, we develop a new scheme mentioned to as MU-PP-GDs with μ-law companding to minimize PAPR by compressing and enlarging of massive MIMO OFDM signals simultaneously. At CCDF = 10−3, the proposed scheme (MU-PP-GDs with μ-law companding for Iterations = 100) minimizes the PAPR to 3.70 dB which is better than that of MU-PP-GDs, (iteration = 100) as shown in simulation results.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6184
Author(s):  
Kazuhiro Honda

This paper presents a method of implementing a 4 × 4 correlation matrix for evaluating the uplink channel properties of multiple-input multiple-output (MIMO) antennas using an over-the-air measurement system. First, the implementation model used to determine the correlation coefficients between the signals received at the base station (BS) antennas via the uplink channel is described. Then, a methodology is introduced to achieve a 4 × 4 correlation matrix for a BS MIMO antenna based on Jakes’ model by setting the initial phases of the secondary wave sources in the two-dimensional channel model. The performance of the uplink channel for a four-element MIMO terminal array antenna is evaluated using a two-dimensional bidirectional fading emulator. The results show that the measured correlation coefficients between the signals received via the uplink channel at the BS antennas using the proposed method are in good agreement with the BS correlation characteristics calculated using Monte Carlo simulation and the theoretical formula, thereby confirming the effectiveness of the proposed method.


Author(s):  
Yusnita Rahayu ◽  
Indah Permata Sari ◽  
Dara Incam Ramadhan ◽  
Razali Ngah

This article presented a millimeter wave antenna which operated at 38 GHz for 5G mobile base station. The MIMO (Multiple Input Multiple Output) antenna consisted of 1x10 linear array configurations. The proposed antenna’s size was 88 x 98 mm^2  and printed on 1.575 mm-thick Rogers Duroid 5880 subsrate with dielectric constant of ε_r= 2.2 and loss tangent (tanδ) of 0.0009. The antenna array covered along the azimuth plane to provide the coverage to the users in omnidirection. The simulated results showed that the single element antenna had the reflection coefficient (S11) of -59 dB, less than -10 dB in the frequency range of 35.5 - 39.6 GHz. More than 4.1 GHz of impedance bandwidth was obtained. The gain of the antenna linear array was 17.8 dBi while the suppression of the side lobes was -2.7 dB.  It showed a high array gain throughout the impedance bandwidth with overall of VSWR were below 1.0646. It designed using CST microwave studio.


2019 ◽  
Vol 6 (1) ◽  
pp. 15-26 ◽  
Author(s):  
K. Vasudevan ◽  
K. Madhu ◽  
Shivani Singh

Background:Single user Massive Multiple Input Multiple Output (MIMO) can be used to increase the spectral efficiency since the data is transmitted simultaneously from a large number of antennas located at both the base station and mobile. It is feasible to have a large number of antennas in the mobile, in the millimeter wave frequencies. However, the major drawback of single user massive MIMO is the high complexity of data recovery at the receiver.Methods:In this work, we propose a low complexity method of data detection with the help of re-transmissions. A turbo code is used to improve the Bit-Error-Rate (BER).Results and Conclusion:Simulation results indicate a significant improvement in BER with just two re-transmissions as compared to the single transmission case. We also show that the minimum average SNR per bit required for error-free propagation over a massive MIMO channel with re-transmissions is identical to that of the Additive White Gaussian Noise (AWGN) channel, which is equal to -1.6 dB.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 164 ◽  
Author(s):  
Zahra Mokhtari ◽  
Maryam Sabbaghian ◽  
Rui Dinis

Massive multiple input multiple output (MIMO) technology is one of the promising technologies for fifth generation (5G) cellular communications. In this technology, each cell has a base station (BS) with a large number of antennas, allowing the simultaneous use of the same resources (e.g., frequency and/or time slots) by multiple users of a cell. Therefore, massive MIMO systems can bring very high spectral and power efficiencies. However, this technology faces some important issues that need to be addressed. One of these issues is the performance degradation due to hardware impairments, since low-cost RF chains need to be employed. Another issue is the channel estimation and channel aging effects, especially in fast mobility environments. In this paper we will perform a comprehensive study on these two issues considering two of the most promising candidate waveforms for massive MIMO systems: Orthogonal frequency division multiplexing (OFDM) and single-carrier frequency domain processing (SC-FDP). The studies and the results show that hardware impairments and inaccurate channel knowledge can degrade the performance of massive MIMO systems extensively. However, using suitable low complex estimation and compensation techniques and also selecting a suitable waveform can reduce these effects.


Author(s):  
Tanyaluk Deeka ◽  
Boriboon Deeka ◽  
Surajate On-rit

Massive Multiple-Input Multiple-Output (MIMO) is widely considered a pivotal communication technology for future generations of wireless networks. Massive MIMO uses a large number of antennas at the base station, which offers better effectiveness in spectral and energy use. However, a Frequency Division Duplex (FDD) system is challenging in reciprocity since it is difficult to estimate channels and requires feeding back channel state information. Joint Spatial Division and Multiplexing (JSDM) is a simplified FDD technique to provide massive MIMO gains. The main idea of JSDM is related to grouping users with approximately similar channel covariance. Many machine learning algorithms have been applied to conduct user grouping. In this paper, to improve the user grouping, we employ Reinforcement Guided Competitive Learning (RGCL) to the user grouping and then compare it with clustering techniques, including K-means, and sequential K-means to achieve the appropriate user grouping. The experimental results show that the RGCL technique represents better performance in computational time and system throughput than the other two above mentioned techniques, since RGCL can avoid being trapping in local minima.


2021 ◽  
Vol 11 (4) ◽  
pp. 7417-7423
Author(s):  
Z. A. Shamsan

Multiple Input Multiple Output (MIMO) and massive MIMO technologies play a significant role in mitigating five generation (5G) channel propagation impairments. These impairments increase as frequency increases, and they become worse at millimeter-waves (mmWaves). They include difficulties of material penetration, Line-of-Sight (LoS) inflexibility, small cell coverage, weather circumstances, etc. This paper simulates the 5G channel at the E-band frequency using the Monte Carlo approach-based NYUSIM tool. The urban microcell (UMi) is the communication environment of this simulation. Both MIMO and massive MIMO use uniformly spaced rectangular antenna arrays (URA). This study investigates the effects of MIMO and massive MIMO on LOS and Non-LOS (NLOS) environments. The simulations considered directional and omnidirectional antennas, the Power Delay Profile (PDP), Root Mean Square (RMS) delay spread, and small-scale PDP for both LOS and NLOS environments. As expected, the wide variety of the results showed that the massive MIMO antenna outperforms the MIMO antenna, especially in terms of the signal power received at the end-user and for longer path lengths.


Sign in / Sign up

Export Citation Format

Share Document