scholarly journals Computational Fluid Dynamics Applied to Lubricated Mechanical Components: Review of the Approaches to Simulate Gears, Bearings, and Pumps

2020 ◽  
Vol 10 (24) ◽  
pp. 8810
Author(s):  
Lorenzo Maccioni ◽  
Franco Concli

The lubrication of the mechanical components reduces friction, and increases the efficiency and the reliability. However, the interaction of moving components with the lubricant leads to power losses due to viscous and inertial effects. Nowadays, the study of lubricant behavior can be carried out through computational fluid dynamics (CFD) simulations. Nevertheless, the modeling of the computational domain within complex mechanical systems (e.g., ordinary, planetary and cycloidal gearboxes, roller bearings, and pumps) requires the exploitation of specific CFD techniques. In the last decades, many mesh-based or meshless approaches have been developed to deal with the complex management of the topological changes of the computational domain or the modeling of complex kinematics. This paper aims to collect and to classify the scientific literature where these approaches have been exploited for the study of lubricated mechanical systems. The goal of this research is to shed a light on the current state of the art in performing CFD analysis of these systems. Moreover, the objective of this study is to stress the limits and the capabilities of the main CFD techniques applied in this field of research. Results show the main differences in terms of accuracy achievable and the level of complexity that can be managed with the different CFD approaches.

2008 ◽  
Vol 5 (28) ◽  
pp. 1291-1301 ◽  
Author(s):  
Sam Van Wassenbergh ◽  
Peter Aerts

Most theoretical models of unsteady aquatic movement in organisms assume that including steady-state drag force and added mass approximates the hydrodynamic force exerted on an organism's body. However, animals often perform explosively quick movements where high accelerations are realized in a few milliseconds and are followed closely by rapid decelerations. For such highly unsteady movements, the accuracy of this modelling approach may be limited. This type of movement can be found during pivot feeding in pipefish that abruptly rotate their head and snout towards prey. We used computational fluid dynamics (CFD) to validate a simple analytical model of cranial rotation in pipefish. CFD simulations also allowed us to assess prey displacement by head rotation. CFD showed that the analytical model accurately calculates the forces exerted on the pipefish. Although the initial phase of acceleration changes the flow patterns during the subsequent deceleration phase, the accuracy of the analytical model was not reduced during this deceleration phase. Our analysis also showed that prey are left approximately stationary despite the quickly approaching pipefish snout. This suggests that pivot-feeding fish need little or no suction to compensate for the effects of the flow induced by cranial rotation.


RBRH ◽  
2021 ◽  
Vol 26 ◽  
Author(s):  
Mayara Francisca da Silva ◽  
Fábio Veríssimo Gonçalves ◽  
Johannes Gérson Janzen

ABSTRACT Computational Fluid Dynamics (CFD) simulations of a leakage in a pressurized pipe were undertaken to determine the empirical effects of hydraulic and geometric factors on the leakage flow rate. The results showed that pressure, leakage area and leakage form, influenced the leakage flow rate significantly, while pipe thickness and mean velocity did not influence the leakage flow rate. With relation to the interactions, the effect of pressure upon leakage flow rate depends on leakage area, being stronger for great leakage areas; the effects of leakage area and pressure on leakage flow rate is more pronounced for longitudinal leakages than for circular leakages. Finally, our results suggest that the equations that predict leakage flow rate in pressurized pipes may need a revision.


2021 ◽  
Author(s):  
Darren Jia

Diabolo is a popular game in which the object can be spun at up to speeds of 5000 rpm. This high spin velocity gives the diabolo the necessary angular momentum to remain stable. The shape of the diabolo generates an interesting air flow pattern. The viscous air applies a resistive torque on the fast spinning diabolo. Through computational fluid dynamics (CFD) simulations it's shown that the resistive torque has an interesting dependence on the angular speed of the diabolo. Further, the geometric shape of the diabolo affects the dependence of torque on angular speed.


Fluids ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 73 ◽  
Author(s):  
Galih Bangga

The present studies deliver the computational investigations of a 10 MW turbine with a diameter of 205.8 m developed within the framework of the AVATAR (Advanced Aerodynamic Tools for Large Rotors) project. The simulations were carried out using two methods with different fidelity levels, namely the computational fluid dynamics (CFD) and blade element and momentum (BEM) approaches. For this purpose, a new BEM code namely B-GO was developed employing several correction terms and three different polar and spatial interpolation options. Several flow conditions were considered in the simulations, ranging from the design condition to the off-design condition where massive flow separation takes place, challenging the validity of the BEM approach. An excellent agreement is obtained between the BEM computations and the 3D CFD results for all blade regions, even when massive flow separation occurs on the blade inboard area. The results demonstrate that the selection of the polar data can influence the accuracy of the BEM results significantly, where the 3D polar datasets extracted from the CFD simulations are considered the best. The BEM prediction depends on the interpolation order and the blade segment discretization.


Author(s):  
Sara P. Rimer ◽  
Nikolaos D. Katopodes ◽  
April M. Warnock

The threat of accidental or deliberate toxic chemicals released into public spaces is a significant concern to public safety. The real-time detection and mitigation of such hazardous contaminants has the potential to minimize harm and save lives. We develop a computational fluid dynamics (CFD) flow control model with the capability of detecting and mitigating such contaminants. Furthermore, we develop a physical prototype to then test the computer model. The physical prototype is in its final stages of construction. Its current state, along with preliminary examples of the flow control model are presented throughout this paper.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 159
Author(s):  
Knut Erik Teigen Giljarhus ◽  
Daniel Årrestad Stave ◽  
Luca Oggiano

In professional cycling, even small adjustments in position could mean that valuable seconds are gained over the course of a time-trial race. This study investigates the influence of arm position on the aerodynamic drag of a cyclist. Based on a 3D scanned model of a professional cyclist, 64 alternate positions are generated. The parameters that are investigated are the distance between elbows, elbow extension, and distance between hands. Computational fluid dynamics (CFD) simulations of all positions are performed, and a regression model is built from the results. The results indicate that the optimal posture is achieved for a minimum in all investigated parameters, which means that the hands and elbows should be kept together with hands up towards the face. Furthermore, elbow extension seems to be the most crucial parameter, followed by the distance between elbows, and then by the distance between the hands. The presented methodology can be applied to study other parameters relevant to cycling aerodynamics or be applied to other sport activities as well.


2004 ◽  
Vol 127 (2) ◽  
pp. 349-351 ◽  
Author(s):  
M. Vahdati ◽  
A. I. Sayma ◽  
C. Freeman ◽  
M. Imregun

This paper describes a novel way of prescribing computational fluid dynamics (CFD) boundary conditions for axial-flow compressors. The approach is based on extending the standard single passage computational domain by adding an intake upstream and a variable nozzle downstream. Such a route allows us to consider any point on a given speed characteristic by simply modifying the nozzle area, the actual boundary conditions being set to atmospheric ones in all cases. Using a fan blade, it is shown that the method not only allows going past the stall point but also captures the typical hysteresis loop behavior of compressors.


Sign in / Sign up

Export Citation Format

Share Document