scholarly journals Effectiveness of Machine Learning Approaches Towards Credibility Assessment of Crowdfunding Projects for Reliable Recommendations

2020 ◽  
Vol 10 (24) ◽  
pp. 9062
Author(s):  
Wafa Shafqat ◽  
Yung-Cheol Byun ◽  
Namje Park

Recommendation systems aim to decipher user interests, preferences, and behavioral patterns automatically. However, it becomes trickier to make the most trustworthy and reliable recommendation to users, especially when their hardest earned money is at risk. The credibility of the recommendation is of magnificent importance in crowdfunding project recommendations. This research work devises a hybrid machine learning-based approach for credible crowdfunding projects’ recommendations by wisely incorporating backers’ sentiments and other influential features. The proposed model has four modules: a feature extraction module, a hybrid LDA-LSTM (latent Dirichlet allocation and long short-term memory) based latent topics evaluation module, credibility formulation, and recommendation module. The credibility analysis proffers a process of correlating project creator’s proficiency, reviewers’ sentiments, and their influence to estimate a project’s authenticity level that makes our model robust to unauthentic and untrustworthy projects and profiles. The recommendation module selects projects based on the user’s interests with the highest credible scores and recommends them. The proposed recommendation method harnesses numeric data and sentiment expressions linked with comments, backers’ preferences, profile data, and the creator’s credibility for quantitative examination of several alternative projects. The proposed model’s evaluation depicts that credibility assessment based on the hybrid machine learning approach contributes efficient results (with 98% accuracy) than existing recommendation models. We have also evaluated our credibility assessment technique on different categories of the projects, i.e., suspended, canceled, delivered, and never delivered projects, and achieved satisfactory outcomes, i.e., 93%, 84%, 58%, and 93%, projects respectively accurately classify into our desired range of credibility.

2020 ◽  
Author(s):  
Jia Xue ◽  
Junxiang Chen ◽  
Ran Hu ◽  
Chen Chen ◽  
Chengda Zheng ◽  
...  

BACKGROUND It is important to measure the public response to the COVID-19 pandemic. Twitter is an important data source for infodemiology studies involving public response monitoring. OBJECTIVE The objective of this study is to examine COVID-19–related discussions, concerns, and sentiments using tweets posted by Twitter users. METHODS We analyzed 4 million Twitter messages related to the COVID-19 pandemic using a list of 20 hashtags (eg, “coronavirus,” “COVID-19,” “quarantine”) from March 7 to April 21, 2020. We used a machine learning approach, Latent Dirichlet Allocation (LDA), to identify popular unigrams and bigrams, salient topics and themes, and sentiments in the collected tweets. RESULTS Popular unigrams included “virus,” “lockdown,” and “quarantine.” Popular bigrams included “COVID-19,” “stay home,” “corona virus,” “social distancing,” and “new cases.” We identified 13 discussion topics and categorized them into 5 different themes: (1) public health measures to slow the spread of COVID-19, (2) social stigma associated with COVID-19, (3) COVID-19 news, cases, and deaths, (4) COVID-19 in the United States, and (5) COVID-19 in the rest of the world. Across all identified topics, the dominant sentiments for the spread of COVID-19 were anticipation that measures can be taken, followed by mixed feelings of trust, anger, and fear related to different topics. The public tweets revealed a significant feeling of fear when people discussed new COVID-19 cases and deaths compared to other topics. CONCLUSIONS This study showed that Twitter data and machine learning approaches can be leveraged for an infodemiology study, enabling research into evolving public discussions and sentiments during the COVID-19 pandemic. As the situation rapidly evolves, several topics are consistently dominant on Twitter, such as confirmed cases and death rates, preventive measures, health authorities and government policies, COVID-19 stigma, and negative psychological reactions (eg, fear). Real-time monitoring and assessment of Twitter discussions and concerns could provide useful data for public health emergency responses and planning. Pandemic-related fear, stigma, and mental health concerns are already evident and may continue to influence public trust when a second wave of COVID-19 occurs or there is a new surge of the current pandemic.


10.2196/20550 ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. e20550
Author(s):  
Jia Xue ◽  
Junxiang Chen ◽  
Ran Hu ◽  
Chen Chen ◽  
Chengda Zheng ◽  
...  

Background It is important to measure the public response to the COVID-19 pandemic. Twitter is an important data source for infodemiology studies involving public response monitoring. Objective The objective of this study is to examine COVID-19–related discussions, concerns, and sentiments using tweets posted by Twitter users. Methods We analyzed 4 million Twitter messages related to the COVID-19 pandemic using a list of 20 hashtags (eg, “coronavirus,” “COVID-19,” “quarantine”) from March 7 to April 21, 2020. We used a machine learning approach, Latent Dirichlet Allocation (LDA), to identify popular unigrams and bigrams, salient topics and themes, and sentiments in the collected tweets. Results Popular unigrams included “virus,” “lockdown,” and “quarantine.” Popular bigrams included “COVID-19,” “stay home,” “corona virus,” “social distancing,” and “new cases.” We identified 13 discussion topics and categorized them into 5 different themes: (1) public health measures to slow the spread of COVID-19, (2) social stigma associated with COVID-19, (3) COVID-19 news, cases, and deaths, (4) COVID-19 in the United States, and (5) COVID-19 in the rest of the world. Across all identified topics, the dominant sentiments for the spread of COVID-19 were anticipation that measures can be taken, followed by mixed feelings of trust, anger, and fear related to different topics. The public tweets revealed a significant feeling of fear when people discussed new COVID-19 cases and deaths compared to other topics. Conclusions This study showed that Twitter data and machine learning approaches can be leveraged for an infodemiology study, enabling research into evolving public discussions and sentiments during the COVID-19 pandemic. As the situation rapidly evolves, several topics are consistently dominant on Twitter, such as confirmed cases and death rates, preventive measures, health authorities and government policies, COVID-19 stigma, and negative psychological reactions (eg, fear). Real-time monitoring and assessment of Twitter discussions and concerns could provide useful data for public health emergency responses and planning. Pandemic-related fear, stigma, and mental health concerns are already evident and may continue to influence public trust when a second wave of COVID-19 occurs or there is a new surge of the current pandemic.


MENDEL ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 23-30
Author(s):  
Marina Volkova ◽  
Petr Chmelar ◽  
Lukas Sobotka

SQL injection is one of the most popular and serious information security threats. By exploiting database vulnerabilities, attackers may get access to sensitive data or enable compromised computers to conduct further network attacks. Our research is focused on applying machine learning approaches for identication of injection characteristics in the HTTP query string. We compare results from Rule-based Intrusion Detection System, Support Vector Machines, Multilayer Perceptron, Neural Network with Dropout layers, and Deep Sequential Models (Long Short-Term Memory, and Gated Recurrent Units) using multiple string analysis, bag-of-word techniques, and word embedding for query string vectorization. Results proved benets of applying machine learning approach for detection malicious pattern in HTTP query string.


2021 ◽  
pp. 1-16
Author(s):  
Sunil Kumar Jha ◽  
Ninoslav Marina ◽  
Jinwei Wang ◽  
Zulfiqar Ahmad

Machine learning approaches have a valuable contribution in improving competency in automated decision systems. Several machine learning approaches have been developed in the past studies in individual disease diagnosis prediction. The present study aims to develop a hybrid machine learning approach for diagnosis predictions of multiple diseases based on the combination of efficient feature generation, selection, and classification methods. Specifically, the combination of latent semantic analysis, ranker search, and fuzzy-rough-k-nearest neighbor has been proposed and validated in the diagnosis prediction of the primary tumor, post-operative, breast cancer, lymphography, audiology, fertility, immunotherapy, and COVID-19, etc. The performance of the proposed approach is compared with single and other hybrid machine learning approaches in terms of accuracy, analysis time, precision, recall, F-measure, the area under ROC, and the Kappa coefficient. The proposed hybrid approach performs better than single and other hybrid approaches in the diagnosis prediction of each of the selected diseases. Precisely, the suggested approach achieved the maximum recognition accuracy of 99.12%of the primary tumor, 96.45%of breast cancer Wisconsin, 94.44%of cryotherapy, 93.81%of audiology, and significant improvement in the classification accuracy and other evaluation metrics in the recognition of the rest of the selected diseases. Besides, it handles the missing values in the dataset effectively.


2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


2019 ◽  
Author(s):  
Oskar Flygare ◽  
Jesper Enander ◽  
Erik Andersson ◽  
Brjánn Ljótsson ◽  
Volen Z Ivanov ◽  
...  

**Background:** Previous attempts to identify predictors of treatment outcomes in body dysmorphic disorder (BDD) have yielded inconsistent findings. One way to increase precision and clinical utility could be to use machine learning methods, which can incorporate multiple non-linear associations in prediction models. **Methods:** This study used a random forests machine learning approach to test if it is possible to reliably predict remission from BDD in a sample of 88 individuals that had received internet-delivered cognitive behavioral therapy for BDD. The random forest models were compared to traditional logistic regression analyses. **Results:** Random forests correctly identified 78% of participants as remitters or non-remitters at post-treatment. The accuracy of prediction was lower in subsequent follow-ups (68%, 66% and 61% correctly classified at 3-, 12- and 24-month follow-ups, respectively). Depressive symptoms, treatment credibility, working alliance, and initial severity of BDD were among the most important predictors at the beginning of treatment. By contrast, the logistic regression models did not identify consistent and strong predictors of remission from BDD. **Conclusions:** The results provide initial support for the clinical utility of machine learning approaches in the prediction of outcomes of patients with BDD. **Trial registration:** ClinicalTrials.gov ID: NCT02010619.


Author(s):  
Samir Bandyopadhyay Sr ◽  
SHAWNI DUTTA ◽  
SHAWNI DUTTA ◽  
SHAWNI DUTTA

BACKGROUND In recent days, Covid-19 coronavirus has been an immense impact on social, economic fields in the world. The objective of this study determines if it is feasible to use machine learning method to evaluate how much prediction results are close to original data related to Confirmed-Negative-Released-Death cases of Covid-19. For this purpose, a verification method is proposed in this paper that uses the concept of Deep-learning Neural Network. In this framework, Long short-term memory (LSTM) and Gated Recurrent Unit (GRU) are also assimilated finally for training the dataset and the prediction results are tally with the results predicted by clinical doctors. The prediction results are validated against the original data based on some predefined metric. The experimental results showcase that the proposed approach is useful in generating suitable results based on the critical disease outbreak. It also helps doctors to recheck further verification of virus by the proposed method. The outbreak of Coronavirus has the nature of exponential growth and so it is difficult to control with limited clinical persons for handling a huge number of patients with in a reasonable time. So it is necessary to build an automated model, based on machine learning approach, for corrective measure after the decision of clinical doctors. It could be a promising supplementary confirmation method for frontline clinical doctors. The proposed method has a high prediction rate and works fast for probable accurate identification of the disease. The performance analysis shows that a high rate of accuracy is obtained by the proposed method. OBJECTIVE Validation of COVID-19 disease METHODS Machine Learning RESULTS 90% CONCLUSIONS The combined LSTM-GRU based RNN model provides a comparatively better results in terms of prediction of confirmed, released, negative, death cases on the data. This paper presented a novel method that could recheck occurred cases of COVID-19 automatically. The data driven RNN based model is capable of providing automated tool for confirming, estimating the current position of this pandemic, assessing the severity, and assisting government and health workers to act for good decision making policy. It could be a promising supplementary rechecking method for frontline clinical doctors. It is now essential for improving the accuracy of detection process. CLINICALTRIAL 2020-04-03 3:22:36 PM


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Janna Hastings ◽  
Martin Glauer ◽  
Adel Memariani ◽  
Fabian Neuhaus ◽  
Till Mossakowski

AbstractChemical data is increasingly openly available in databases such as PubChem, which contains approximately 110 million compound entries as of February 2021. With the availability of data at such scale, the burden has shifted to organisation, analysis and interpretation. Chemical ontologies provide structured classifications of chemical entities that can be used for navigation and filtering of the large chemical space. ChEBI is a prominent example of a chemical ontology, widely used in life science contexts. However, ChEBI is manually maintained and as such cannot easily scale to the full scope of public chemical data. There is a need for tools that are able to automatically classify chemical data into chemical ontologies, which can be framed as a hierarchical multi-class classification problem. In this paper we evaluate machine learning approaches for this task, comparing different learning frameworks including logistic regression, decision trees and long short-term memory artificial neural networks, and different encoding approaches for the chemical structures, including cheminformatics fingerprints and character-based encoding from chemical line notation representations. We find that classical learning approaches such as logistic regression perform well with sets of relatively specific, disjoint chemical classes, while the neural network is able to handle larger sets of overlapping classes but needs more examples per class to learn from, and is not able to make a class prediction for every molecule. Future work will explore hybrid and ensemble approaches, as well as alternative network architectures including neuro-symbolic approaches.


Sign in / Sign up

Export Citation Format

Share Document