scholarly journals Aeroaocustic Numerical Analysis of the Vehicle Model

2020 ◽  
Vol 10 (24) ◽  
pp. 9066
Author(s):  
Władysław Marek Hamiga ◽  
Wojciech Bronisław Ciesielka

Understanding local phenomena connected with airflow around road vehicles allows to reduce the negative impact of transportation on the environment. This paper presents using numerical tools for Computational Fluid Dynamics (CFD) and Computational AeroAcoustic (CAA) calculation. As a model for simulation, simplified car geometry is used, which is known in the research community as an Ahmed body. The study is divided into two main parts: a validation process and a CAA analysis using the Ffowcs Williams–Hawkings (FW-H) analogy. Research is performed using k−ω Shear Stress Transport (SST) and the Large Eddy Simulation (LES) turbulence model. To compare results with other authors’ studies, three different comparison criteria are introduced: a drag coefficient for different velocities, characteristic flow structure, and velocity profiles. The CAA analysis is presented using colormaps and Fast Fourier Transformation (FFT). The methods used in this work allow visualizing the acoustic field around reference geometry and determining the frequency range for which the A-weighted sound pressure level is the highest.


Author(s):  
Yuan Cheng ◽  
Makoto Tsubokura ◽  
Takuji Nakashima ◽  
Takahide Nouzawa ◽  
Yoshihiro Okada


Author(s):  
Alaa Hasan ◽  
Tarek ElGammal ◽  
Ryoichi S. Amano ◽  
Essam E. Khalil

Accurate control of thermal conditions in large space buildings like an underground metro station is a significant issue because passengers’ thermal comfort must be maintained at a satisfactory level. The large eddy simulation (LES) model was adopted while using the computational fluid dynamics (CFD) software “STAR CCM+” to set up a CFD station model to predict static air temperature, velocity, relative humidity and predicted mean vote (PMV), which indicates the passengers’ thermal comfort. The increase in the number of passengers using the model station is taken into consideration. The studied cases covered all the possible modes of the station box, these modes are (1) the station box is empty of trains, (2) the presence of one train inside the station box, (3) the presence of two trains inside the station box. The objective is to bring the passengers’ thermal comfort in all modes to the acceptable level. The operation of under platform exhaust (UPE) system is considered in case of train presence inside the station box. The use of UPE is more energy efficient than depending entirely on the air conditioning system to maintain the thermal conditions comfortable.



Atmosphere ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 63 ◽  
Author(s):  
Tobias Gronemeier ◽  
Matthias Sühring

Courtyards are an omnipresent feature within the urban environment. Residents often use courtyards as recreation areas, which makes them crucial for the physical and psychological comfort of the urban population. However, considering that courtyards represent enclosed cavities, they are often poorly ventilated spaces and pollutants from neighboring traffic, once entrained, can pose a serious threat to human health. Here, we studied the effects of lateral openings on courtyard pollution and ventilation. Therefore, we performed a set of large-eddy simulations for idealized urban environments with different courtyard configurations. While pollutant concentration and ventilation are barely modified by lateral openings for wide courtyards, lateral openings have a significant effect on the mean concentration, the number of high-concentration events and the ventilation within narrower and deeper courtyards. The impacts of lateral openings on air quality within courtyards strongly depend on their orientation with respect to the flow direction, as well as on the upstream flow conditions and upstream building configuration. We show that lateral openings, in most cases, have a negative impact on air quality; nevertheless, we also present configurations where lateral openings positively impact the air quality within courtyards. These outcomes may certainly contribute to improve future urban planning in terms of health protection.



2017 ◽  
Vol 14 (03) ◽  
pp. 1750021 ◽  
Author(s):  
A. Niktash ◽  
B. P. Huynh

A windcatcher is a structure for providing natural ventilation using wind power; it is usually fitted on the roof of a building to exhaust the inside stale air to the outside and supplies the outside fresh air into the building interior space working by pressure difference between outside and inside of the building. In this paper, the behavior of free wind flow through a three-dimensional room fitted with a centered position two-canal bottom shape windcatcher model is investigated numerically, using a commercial computational fluid dynamics (CFD) software package and LES (Large Eddy Simulation) CFD method. The results have been compared with the obtained results for the same model but using RANS (Reynolds Averaged Navier–Stokes) CFD method. The model with its surrounded space has been considered in both method. It is found that the achieved results for the model from LES method are in good agreement with RANS method’s results for the same model.



2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Piroz Zamankhan

The air-water mixture from an artificially aerated spillway flowing down to a canyon may cause serious erosion and damage to both the spillway surface and the environment. The location of an aerator, its geometry, and the aeration flow rate are important factors in the design of an environmentally friendly high-energy spillway. In this work, an analysis of the problem based on physical and computational fluid dynamics (CFD) modeling is presented. The numerical modeling used was a large eddy simulation technique (LES) combined with a discrete element method. Three-dimensional simulations of a spillway were performed on a graphics processing unit (GPU). The result of this analysis in the form of design suggestions may help diminishing the hazards associated with cavitation.



2017 ◽  
Vol 16 (1-2) ◽  
pp. 44-64 ◽  
Author(s):  
P Martínez-Lera ◽  
J Christophe ◽  
C Schram

The self-noise of a controlled-diffusion airfoil is computed with several numerical techniques based on the acoustic analogy and involving different degrees of approximation. The flow solution is obtained through an incompressible large eddy simulation. The acoustic field as described by Lighthill’s analogy is computed with a finite element method applied to the exact airfoil geometry, and this solution is compared with results based on a half-plane Green’s function. This problem behaves as a classical trailing-edge noise problem for a wide range of frequencies; however, other mechanisms of sound production become significant at high frequencies. The results highlight the relative strengths and weaknesses of quadrupole- and dipole-based formulations of the acoustic analogy based on incompressible Computational Fluid Dynamics (CFD) results when applied to wall-bounded turbulent flows.



2012 ◽  
Vol 152-154 ◽  
pp. 1319-1324
Author(s):  
Tao Lu ◽  
Xing Guo Zhu ◽  
Ping Wang ◽  
Wei Yyu Zhu

In the present paper, large-eddy simulation (LES) based on commercial computational fluid dynamics (CFD) software FLUENT for prediction of flow and heat transfer in a mixing T-junction was completed. Mean and root mean square (RMS) temperature and velocity were defined to describe the distributions and fluctuations of temperature and velocity. Numerical results indicate that profiles between symmetrical planes are almost same and the root mean square temperature and velocity close to the center of the main duct in the downstream are larger than those near the main duct wall. The prediction of the fluctuations of temperature and velocity is significant to understand the knowledge of the cause of thermal fatigue in a mixing T-junction.



Author(s):  
Takanori Uchida

At the Atsumi Wind Farm in Aichi Prefecture, Japan, damage to wind turbines occurred frequently due to terrain-induced turbulence. In the present study, numerical analyses of terrain-induced turbulence were conducted by reproducing the topography in the vicinity of the wind turbine sites in high resolution and using RIAM-COMPACT natural terrain version, which is based on large eddy simulation (LES). The results of the diagnoses indicated that, in the case of south-easterly wind, terrain-induced turbulence is generated at a small terrain feature located upstream of Wind Turbine (WT) #2, which serves as the origin of the turbulence. At the Atsumi Wind Farm, a combination of the series of wind diagnoses and on-site operation experience led to a decision to adopt an "automatic shutdown program" for WTs #1 and #2. Here, "automatic shutdown program" refers to the automatic suspension of wind turbine operation upon the wind speed and direction meeting the conditions associated with significant effects of terrain-induced turbulence at a wind turbine site. The adoption of the "automatic shutdown program" has successfully resulted in a large reduction in the number of occurrences of wind turbine damage, thus, creating major positive economic effects. 1) a reduction in the repair costs by 9.322 million yen per year per wind turbine, 2) an increase in the availability factor by 8.05%, and 3) an increase in the capacity factor by 1.7%.



2013 ◽  
Vol 333-335 ◽  
pp. 2076-2079 ◽  
Author(s):  
Hong Xia Zhu ◽  
Yingxiao Lin ◽  
Jing Yi Zhao

In this paper, Computational Fluid Dynamics (CFD) is used to analyze the micro self-vibration of aerostatic bearing with pocketed orifice type restrictor as the bearings performance is stable and it is widely used ultra-precision equipments. By using Large Eddy Simulation (LES), time-variation flow field inside the bearing is obtained. Then the pressure fluctuation characteristics is discussed because it influences the micro self-vibration of the bearing directly. Moreover, the relationship between bearing diameter, orifice diameter, air chamber diameter, air chamber depth and the micro self-vibration is researched. The results can be considered for the designing of ultra-precision aerostatic bearing with pocketed orifice type restrictor.



2012 ◽  
Vol 249-250 ◽  
pp. 646-651
Author(s):  
Xiao Yan Yang ◽  
You Gang Xiao ◽  
Yu Shi

With large eddy simulation(LES) and Lighthill-Curle acoustic theory, the aerodynamic noises radiated from pantograph insulators with rectangular, circular, elliptical section were calculated, and the optimal pantograph insulator shape was obtained. The results show that in the same model, the sound pressure level (SPL) spectrum at different monitoring points are basically the same, but the amplitude is different. In different models, the SPL spectrum are different. As for rectangular, circular, elliptical section insulators, the frequency with maximum SPL reduces gradually. For reducing aerodynamic noise, the elliptical section insulator is optimal, and the long elliptical axis should be consistent with air flow. The pantograph with bigger and less components is helpful to reduce the aerodynamic noise.



Sign in / Sign up

Export Citation Format

Share Document