scholarly journals Stability Assessment of Current Controller with Harmonic Compensator for LCL-Filtered Grid-Connected Inverter under Distorted Weak Grid

2020 ◽  
Vol 11 (1) ◽  
pp. 212
Author(s):  
Seung-Jin Yoon ◽  
Thuy Vi Tran ◽  
Kyeong-Hwa Kim

An assessment of the stability and performance of current controllers with harmonic compensators is presented for an inductive-capacitive-inductive (LCL)-filtered grid-connected inverter under distorted weak grid conditions. By using two typical current control schemes which are the direct current controller with the capacitor current-based active damping and integral-resonant state feedback current controller, the closed-loop system stability and current control performance are investigated in the presence of both uncertain grid impedance and distorted grid. Even though the controller stability has been investigated under weak grid in several studies, the stability assessment of the entire current control scheme, including the harmonic resonant controllers, still needs a further comprehensive investigation. The system stability is analyzed by obtaining the movement of the closed-loop poles in the discrete-time domain when the grid impedance varies. To fully study the impact of distorted weak grid condition on the LCL filters, three LCL filter parameter sets giving the resonance frequency in different frequency bands are chosen for the purpose of evaluating the system robustness and grid-injected current quality. In order to support the presented theoretical analyses, comprehensive simulation and experimental results based on 32-bit DSP TMS320F28335 to control 2 kVA grid-connected inverter are presented in terms of grid current quality and control stability in the environment of both uncertain grid impedance and distorted grid.

Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3676
Author(s):  
Chuanyue Li ◽  
Taoufik Qoria ◽  
Frederic Colas ◽  
Jun Liang ◽  
Wenlong Ming ◽  
...  

The dq impedance stability analysis for a grid-connected current-control inverter is based on the impedance ratio matrix. However, the coupled matrix brings difficulties in deriving its eigenvalues for the analysis based on the general Nyquist criterion. If the couplings are ignored for simplification, unacceptable errors will be present in the analysis. In this paper, the influence of the couplings on the dq impedance stability analysis is studied. To take the couplings into account simply, the determinant-based impedance stability analysis is used. The mechanism between the determinant of the impedance-ratio matrix and the inverter stability is unveiled. Compared to the eigenvalues-based analysis, only one determinant rather than two eigenvalue s-function is required for the stability analysis. One Nyquist plot or pole map can be applied to the determinant to check the right-half-plane poles. The accuracy of the determinant-based stability analysis is also checked by comparing with the state-space stability analysis method. For the stability analysis, the coupling influence on the current control, the phase-locked loop, and the grid impedance are studied. The errors can be 10% in the stability analysis if the couplings are ignored.


2016 ◽  
Vol 1 (4) ◽  
pp. 50
Author(s):  
Jiao Jiao ◽  
R. Mark Nelms

Explored in this paper is the grid impedance effect on the stability of a single-phase grid connected inverter with an LC filter based on an analysis of the inverter output impedance. For a single-phase grid connected inverter, a PI controller is often used to regulate the current injected into the grid. However, the control performance can be influenced when the inverter is connected to a weak grid. Also, the utility grid has background harmonic noise, which can make the injected current distorted. Therefore, analysis of the output impedance of a single-phase grid connected inverter is important for the robustness and stability of the system. By modeling the output impedance of inverter, it can be determined that the proportional gain and integral gain of the controller have an effect on the output impedance. Analytical results show that by adjusting the PI controller parameters, the ability for harmonic reduction and stability of the system can be improved. Simulation and experiments using a 1 kW single-phase grid connected inverter verify the effectiveness of the theoretical analysis.


2021 ◽  
Vol 11 (14) ◽  
pp. 6256
Author(s):  
Mohamad Amin Ghasemi ◽  
Seyed Fariborz Zarei ◽  
Saeed Peyghami ◽  
Frede Blaabjerg

This paper proposes a nonlinear decoupled current control scheme for a grid-connected inverter with LCL filter. Decoupling the active and reactive current control channels is one of the main demands in the control of inverters. For inverters with an L filter, the decoupling can be achieved by a proper feed-forward of grid voltages. However, the coupling of channels is a complex issue for converters with LCL filters. The resonance mode of the LCL filter may cause instability, which adds more complexity to the analysis. In this paper, state equations of the system are provided, which highlight the coupling between active and reactive currents injected into the grid. Accordingly, a non-linear control scheme is proposed which effectively decouples the channels and dampens the resonant modes of the LCL filter. The stability of the proposed control method is verified by the Lyapunov criterion. Independency of the system stability to the grid-impedance is another feature of the proposed approach. Moreover, only grid-side currents are needed for implementation of the proposed scheme, avoiding the need for additional current sensors for the output capacitor and grid-side inductor. For accurate modelling of the inverter, the computation and PWM sampling delays are included in the controller design. Finally, various case studies are provided that verify the performance of the proposed approach and the stability of the system.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Ling Yang ◽  
Yandong Chen ◽  
An Luo ◽  
Kunshan Huai ◽  
Leming Zhou ◽  
...  

In the grid-connected inverter based on the deadbeat current control, the filter inductance variation and single update PWM affect the distortion of the grid current, stability, and dynamic of the system. For this, a double update PWM method for the deadbeat current controller in three-phase grid-connected system is proposed, which not only effectively decreases the grid current distortion and control delay, but also improves the system stability and dynamic response speed due to reducing the characteristic root equation order of the closed-loop transfer function. The influence of the filter inductance deviation coefficient on the system performance is analyzed. As a conclusion, the corresponding filter inductance deviation coefficient in the system critical stability increases with increase in the parasitic resistance of the filter inductance and line equivalent resistance and decreases with increase in the sampling frequency. Considering the system stability and dynamic response, the optimal range of the control parameters is acquired. Simulation and experimental results verify the effectiveness of the proposed method.


2022 ◽  
Vol 9 ◽  
Author(s):  
Fuyun Wu ◽  
Zhuang Sun ◽  
Weiji Xu ◽  
Zhizhou Li ◽  
Jianguo Lyu

Under weak grid conditions, the variation of the grid impedance will affect the steady-state and dynamic performance of the LCL-filtered grid-connected inverter and even make the inverter unstable. To ensure the system stability and further improve the dynamic performance in a weak grid, a control parameter design method with multi-constrains considering the system bandwidth for the current controller and active damping is proposed in this paper. First, based on the current controller and active damping with only grid current feedback, the effects of control parameters and grid impedance on the LCL resonant suppression and the performance of the inverter are analyzed. Moreover, the parameter constraints of the controllers are derived considering the grid impedance, including stability, resonance suppression, and margin constraints. Furthermore, as the system bandwidth affects the dynamic performance of the inverter, combined with the obtained multi-constraints, the optimal control parameters are determined by achieving the maximum bandwidth of the system against the impedance variation. Compared with other two methods, when the proposed method is applied, the system can operate with a better dynamic and steady-state performance. Finally, experiments are performed on a 2 kW three-phase grid-connected inverter in the weak grid, which verify the effectiveness of the parameter design method proposed in this paper.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2637
Author(s):  
Zheng ◽  
Liu ◽  
Liu ◽  
Li ◽  
Dai ◽  
...  

To improve the robustness of grid-connected inverter against grid impedance in a weak grid an integrated design method of LCL-filter parameters and controller parameters is proposed. In the method the inherent relation of LCL-filter parameters and controller parameters is taken into consideration to realize their optimized match. A parameter normalization scheme is also developed to facilitate the system stability and robustness analysis. Based on the method all normalization parameters can be designed succinctly according to the required stability and robustness. Additionally, the LCL parameter and controller parameter can be achieved immediately by restoring normalization parameters. The proposed design method can guarantee the inverter stability and robustness simultaneously without needing any compensation network, additional hardware, or the complicated iterative computations which cannot be avoided for the conventional inverter design method. Simulation and experiment results have validated the superiority of the proposed inverter design method.


2021 ◽  
Vol 252 ◽  
pp. 01010
Author(s):  
Deng Songyuan ◽  
Zhao Xia

The traditional proportional feedforward control strategy can suppress the low order harmonics in the strong power grid, but in the weak power grid environment, the grid impedance will have an adverse impact on the stability of the system, resulting in the proportional feedforward control can not suppress the low order harmonics well. In order to solve this problem, a control strategy combining resonant feedforward and new repetitive proportional controller is proposed. Firstly, the stability of traditional proportional feedforward and resonant feedforward systems is analyzed and compared by impedance analysis method. Then, a new repetitive controller is added to suppress low order harmonics based on resonant feedforward control, and the stability of single-phase LCL grid connected inverter system is analyzed Matlab / Simulink is used to simulate and verify the system. The results show that the system stability and the ability to suppress low order harmonics are significantly improved.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1038
Author(s):  
Sungjoon Cho ◽  
Ho-Sung Kang ◽  
Kyo-Beum Lee ◽  
Ji-Yoon Yoo

This paper introduces an improved current control strategy for a grid-connected inverter system operating under distorted grid voltage conditions. Although existing current controllers for grid-connected inverters have proportional integral gains with suitable bandwidth, low-order harmonic components can be generated by distorted grid voltages. The proposed improved current controller is established in a synchronous reference frame that rotates at harmonic frequency. The input signals for the harmonic current controller should contain only the specific harmonic components requiring suppression. Therefore, the proposed current controller uses a harmonic extractor to distinguish current signals from fundamental and specific harmonic components. The harmonic extractor retains only the relevant harmonic components for individual current controllers with high harmonic signal ratios. This paper introduces two different strategies to extract specific harmonic components for the current controller. The proposed control strategy does not require any additional hardware filter circuits and can be implemented easily by designing a suitable digital filter. When using the proposed method, grid current quality is significantly improved compared to conventional methods that do not include harmonic extractors. The effectiveness of the proposed method is verified through simulations and practical experiments.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3223 ◽  
Author(s):  
Liu ◽  
Zhang ◽  
Zou

This paper presents an active disturbance rejection control (ADRC) technique for load frequency control of a wind integrated power system when communication delays are considered. To improve the stability of frequency control, equivalent input disturbances (EID) compensation is used to eliminate the influence of the load variation. In wind integrated power systems, two area controllers are designed to guarantee the stability of the overall closed-loop system. First, a simplified frequency response model of the wind integrated time-delay power system was established. Then the state-space model of the closed-loop system was built by employing state observers. The system stability conditions and controller parameters can be solved by some linear matrix inequalities (LMIs) forms. Finally, the case studies were tested using MATLAB/SIMULINK software and the simulation results show its robustness and effectiveness to maintain power-system stability.


Sign in / Sign up

Export Citation Format

Share Document