scholarly journals A Vehicle Guidance Model with a Close-to-Reality Driver Model and Different Levels of Vehicle Automation

2021 ◽  
Vol 11 (1) ◽  
pp. 380
Author(s):  
Xiaoyi Ma ◽  
Xiaowei Hu ◽  
Stephan Schweig ◽  
Jenitta Pragalathan ◽  
Dieter Schramm

This paper presents a microscopic vehicle guidance model which adapts to different levels of vehicle automation. Independent of the vehicle, the driver model built is different from the common microscopic simulation models that regard the driver and the vehicle as a unit. The term “Vehicle Guidance Model” covers, here, both the human driver as well as a combination of human driver and driver assistance system up to fully autonomously operated vehicles without a (human) driver. Therefore, the vehicle guidance model can be combined with different kinds of vehicle models. As a result, the combination of different types of driver (human/machine) and different types of vehicle (internal combustion engine/electric) can be simulated. Mainly two parts constitute the vehicle guidance model in this paper: the first part is a traditional microscopic car-following model adjusted according to different degrees of automation level. The adjusted model represents the automation level for the present and the near and the more distant future. The second part is a fuzzy control model that describes how humans adjust the pedal position when they want to reach a target speed with their vehicle. An experiment with 34 subjects was carried out with a driving simulator based on the experimental data and the fuzzy control strategy was determined. Finally, when comparing the simulated model data and actual driving data, it is found that the fuzzy model for the human driver can reproduce the behavior of human participants almost accurately.

Author(s):  
Wyatt McManus ◽  
Jing Chen

Modern surface transportation vehicles often include different levels of automation. Higher automation levels have the potential to impact surface transportation in unforeseen ways. For example, connected vehicles with higher levels of automation are at a higher risk for hacking attempts, because automated driving assistance systems often rely on onboard sensors and internet connectivity (Amoozadeh et al., 2015). As the automation level of vehicle control rises, it is necessary to examine the effect different levels of automation have on the driver-vehicle interactions. While research into the effect of automation level on driver-vehicle interactions is growing, research into how automation level affects driver’s responses to vehicle hacking attempts is very limited. In addition, auditory warnings have been shown to effectively attract a driver’s attention while performing a driving task, which is often visually demanding (Baldwin, 2011; Petermeijer, Doubek, & de Winter, 2017). An auditory warning can be either speech-based containing sematic information (e.g., “car in blind spot”) or non-sematic (e.g., a tone, or an earcon), which can influence driver behaviors differently (Sabic, Mishler, Chen, & Hu, 2017). The purpose of the current study was to examine the effect of level of automation and warning type on driver responses to novel critical events, using vehicle hacking attempts as a concrete example, in a driving simulator. The current study compared how level of automation (manual vs. automated) and warning type (non-semantic vs. semantic) affected drivers’ responses to a vehicle hacking attempt using time to collision (TTC) values, maximum steering wheel angle, number of successful responses, and other measures of response. A full factorial between-subjects design with the two factors made four conditions (Manual Semantic, Manual Non-Semantic, Automated Semantic, and Automated Non-Semantic). Seventy-two participants recruited using SONA ( odupsychology.sona-systems.com ) completed two simulated drives to school in a driving simulator. The first drive ended with the participant safely arriving at school. A two-second warning was presented to the participants three quarters of the way through the second drive and was immediately followed by a simulated vehicle hacking attempt. The warning either stated “Danger, hacking attempt incoming” in the semantic conditions or was a 500 Hz sine tone in the non-semantic conditions. The hacking attempt lasted five seconds before simulating a crash into a vehicle and ending the simulation if no intervention by the driver occurred. Our results revealed no significant effect of level of automation or warning type on TTC or successful response rate. However, there was a significant effect of level of automation on maximum steering wheel angle. This is a measure of response quality (Shen & Neyens, 2017), such that manual drivers had safer responses to the hacking attempt with smaller maximum steering wheel angles. In addition, an effect of warning type that approached significance was also found for maximum steering wheel angle such that participants who received a semantic warning had more severe and dangerous responses to the hacking attempt. The TTC and successful response results from the current experiment do not match those in the previous literature. The null results were potentially due to the warning implementation time and the complexity of the vehicle hacking attempt. In contrast, the maximum steering wheel angle results indicated that level of automation and warning type affected the safety and severity of the participants’ responses to the vehicle hacking attempt. This suggests that both factors may influence responses to hacking attempts in some capacity. Further research will be required to determine if level of automation and warning type affect participants ability to safely respond to vehicle hacking attempts. Acknowledgments. We are grateful to Scott Mishler for his assistance with STISIM programming and Faye Wakefield, Hannah Smith, and Pettie Perkins for their assistance in data collection.


2021 ◽  
Vol 1 (2) ◽  
pp. 351-369
Author(s):  
Neville A. Stanton ◽  
James W. Brown ◽  
Kirsten M. A. Revell ◽  
Jed Clark ◽  
Joy Richardson ◽  
...  

This research aims to show the effectiveness of Operator Event Sequence Diagrams (OESDs) in the normative modelling of vehicle automation to human drivers’ handovers and validate the models with observations from a study in a driving simulator. The handover of control from automation to human operators has proved problematic, and in the most extreme circumstances catastrophic. This is currently a topic of much concern in the design of automated vehicles. OESDs were used to inform the design of the interaction, which was then tested in a driving simulator. This test provided, for the first time, the opportunity to validate OESDs with data gathered from videoing the handover processes. The findings show that the normative predictions of driver activity determined during the handover from vehicle automation in a driving simulator performed well, and similar to other Human Factors methods. It is concluded that OESDs provided a useful method for the human-centred automation design and, as the predictive validity shows, can continue to be used with some confidence. The research in this paper has shown that OESDs can be used to anticipate normative behaviour of drivers engaged in handover activities with vehicle automation in a driving simulator. Therefore, OESDs offer a useful modelling tool for the Human Factors profession and could be applied to a wide range of applications and domains.


Author(s):  
Dan T. Horak ◽  
Shane K. Lack

Dynamics of a pickup truck undergoing a rear tire blowout are analyzed as a system controlled by a human driver. Analysis is based on a large nonlinear vehicle dynamics model combined with a human driver model. The main reason why some tire blowouts result in accidents is identified. Insight is generated in experiments with human drivers in a driving simulator that runs the same vehicle model as the one used for analysis. A driver assist system for controlling tire blowouts is developed and validated in real time in the driving simulator.


Author(s):  
Niklas Grabbe ◽  
Michael Höcher ◽  
Alexander Thanos ◽  
Klaus Bengler

Automated driving offers great possibilities in traffic safety advancement. However, evidence of safety cannot be provided by current validation methods. One promising solution to overcome the approval trap (Winner, 2015) could be the scenario-based approach. Unfortunately, this approach still results in a huge number of test cases. One possible way out is to show the current, incorrect path in the argumentation and strategy of vehicle automation, and focus on the systemic mechanisms of road traffic safety. This paper therefore argues the case for defining relevant scenarios and analysing them systemically in order to ultimately reduce the test cases. The relevant scenarios are based on the strengths and weaknesses, in terms of the driving task, for both the human driver and automation. Finally, scenarios as criteria for exclusion are being proposed in order to systemically assess the contribution of the human driver and automation to road safety.


Information ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 13
Author(s):  
Thierry Bellet ◽  
Aurélie Banet ◽  
Marie Petiot ◽  
Bertrand Richard ◽  
Joshua Quick

This article is about the Human-Centered Design (HCD), development and evaluation of an Artificial Intelligence (AI) algorithm aiming to support an adaptive management of Human-Machine Transition (HMT) between car drivers and vehicle automation. The general principle of this algorithm is to monitor (1) the drivers’ behaviors and (2) the situational criticality to manage in real time the Human-Machine Interactions (HMI). This Human-Centered AI (HCAI) approach was designed from real drivers’ needs, difficulties and errors observed at the wheel of an instrumented car. Then, the HCAI algorithm was integrated into demonstrators of Advanced Driving Aid Systems (ADAS) implemented on a driving simulator (dedicated to highway driving or to urban intersection crossing). Finally, user tests were carried out to support their evaluation from the end-users point of view. Thirty participants were invited to practically experience these ADAS supported by the HCAI algorithm. To increase the scope of this evaluation, driving simulator experiments were implemented among three groups of 10 participants, corresponding to three highly contrasted profiles of end-users, having respectively a positive, neutral or reluctant attitude towards vehicle automation. After having introduced the research context and presented the HCAI algorithm designed to contextually manage HMT with vehicle automation, the main results collected among these three profiles of future potential end users are presented. In brief, main findings confirm the efficiency and the effectiveness of the HCAI algorithm, its benefits regarding drivers’ satisfaction, and the high levels of acceptance, perceived utility, usability and attractiveness of this new type of “adaptive vehicle automation”.


Work ◽  
2021 ◽  
Vol 68 (s1) ◽  
pp. S111-S118
Author(s):  
Neil J. Mansfield ◽  
Kartikeya Walia ◽  
Aditya Singh

BACKGROUND: Autonomous vehicles can be classified on a scale of automation from 0 to 5, where level 0 corresponds to vehicles that have no automation to level 5 where the vehicle is fully autonomous and it is not possible for the human occupant to take control. At level 2, the driver needs to retain attention as they are in control of at least some systems. Level 3-4 vehicles are capable of full control but the human occupant might be required to, or desire to, intervene in some circumstances. This means that there could be extended periods of time where the driver is relaxed, but other periods of time when they need to drive. OBJECTIVE: The seat must therefore be designed to be comfortable in at least two different types of use case. METHODS: This driving simulator study compares the comfort experienced in a seat from a production hybrid vehicle whilst being used in a manual driving mode and in autonomous mode for a range of postures. RESULTS: It highlights how discomfort is worse for cases where the posture is non-optimal for the task. It also investigates the design of head and neckrests to mitigate neck discomfort, and shows that a well-designed neckrest is beneficial for drivers in autonomous mode.


Author(s):  
Neville A. Stanton ◽  
James W. Brown ◽  
Kirsten M. A. Revell ◽  
Jisun Kim ◽  
Joy Richardson ◽  
...  

AbstractDesign of appropriate interaction and human–machine interfaces for the handover of control between vehicle automation and human driver is critical to the success of automated vehicles. Problems in this interfacing between the vehicle and driver have led, in some cases, to collisions and fatalities. In this project, Operator Event Sequence Diagrams (OESDs) were used to design the handover activities to and from vehicle automation. Previous work undertaken in driving simulators has shown that the OESDs can be used to anticipate the likely activities of drivers during the handover of vehicle control. Three such studies showed that there was a strong correlation between the activities drivers represented in OESDs and those observed from videos of drivers in the handover process, in driving simulators. For the current study, OESDs were constructed during the design of the interaction and interfaces for the handover of control to and from vehicle automation. Videos of drivers during the handover were taken on motorways in the UK and compared with the predictions from the OESDs. As before, there were strong correlations between those activities anticipated in the OESDs and those observed during the handover of vehicle control from automation to the human driver. This means that OESDs can be used with some confidence as part of the vehicle automation design process, although validity generalisation remains an important goal for future research.


2015 ◽  
Vol 8 (2/3) ◽  
pp. 262-283 ◽  
Author(s):  
Alona Mykhaylenko ◽  
Ágnes Motika ◽  
Brian Vejrum Waehrens ◽  
Dmitrij Slepniov

Purpose – The purpose of this paper is to advance the understanding of factors that affect offshoring performance results. To do so, this paper focuses on the access to location-specific advantages, rather than solely on the properties of the offshoring company, its strategy or environment. Assuming that different levels of synergy may exist between particular offshoring strategic decisions (choosing offshore outsourcing or captive offshoring and the type of function) and different offshoring advantages, this work advocates that the actual fact of realization of certain offshoring advantages (getting or not getting access to them) is a more reliable predictor of offshoring success. Design/methodology/approach – A set of hypotheses derived from the extant literature is tested on the data from a quantitative survey of 1,143 Scandinavian firms. Findings – The paper demonstrates that different governance modes and types of offshored function indeed provide different levels of access to different types of location-specific offshoring advantages. This difference may help to explain the ambiguity of offshoring initiatives performance results. Research limitations/implications – Limitations of the work include using only the offshoring strategy elements and only their limited variety as factors potentially influencing access to offshoring advantages. Also, the findings are limited to Scandinavian companies. Originality/value – The paper introduces a new concept of access, which can help to more reliably predict performance outcomes of offshoring initiatives. Recommendations are also provided to practitioners dealing with offshoring initiatives.


PEDIATRICS ◽  
1991 ◽  
Vol 88 (3) ◽  
pp. 608-619
Author(s):  
Ellen C. Perrin ◽  
Aline G. Sayer ◽  
John B. Willett

Children's concepts about illness causality and bodily functioning change in a predictable way with advancing age. Differences in the understanding of these concepts in healthy children vs children with a chronic illness have not been clearly delineated. This study included 49 children with a seizure disorder, 47 children with an orthopaedic condition, and 96 healthy children, all with normal intelligence and ranging in age from 5 to 16 years. It demonstrates systematic differences in children's general reasoning skills and in their understanding of concepts about illness causality and bodily functioning, as a function of their age and experience of illness. At all ages, children who had a condition with orthopaedic involvement reported less sophisticated general reasoning and concepts about illness than did healthy children; children with a seizure disorder reported similar general reasoning skills to those of healthy children, but considerably less sophisticated concepts about illness. children's concepts about body functioning did not differ as a function of the presence of a chronic illness. When their different levels of general cognitive reasoning were statistically controlled, children with a chronic illness had somewhat more sophisticated concepts about bodily functioning than did healthy children. Differences in conceptual development among children with different types of illnesses lead to interesting speculations with regard to the effects of particular illness characteristics on children's cognitive development.


Author(s):  
Michael A. Nees

The expectations induced by the labels used to describe vehicle automation are important to understand, because research has shown that expectations can affect trust in automation even before a person uses the system for the first time. An online sample of drivers rated the perceived division of driving responsibilities implied by common terms used to describe automation. Ratings of 13 terms were made on a scale from 1 (“human driver is entirely responsible”) to 7 (“vehicle is entirely responsible”) for three driving tasks (steering, accelerating/braking, and monitoring). In several instances, the functionality implied by automation terms did not match the technical definitions of the terms and/or the actual capabilities of the automated vehicle functions currently described by the terms. These exploratory findings may spur and guide future research on this under-examined topic.


Sign in / Sign up

Export Citation Format

Share Document