scholarly journals Developing a Digital Twin and Digital Thread Framework for an ‘Industry 4.0’ Shipyard

2021 ◽  
Vol 11 (3) ◽  
pp. 1097
Author(s):  
Toh Yen Pang ◽  
Juan D. Pelaez Restrepo ◽  
Chi-Tsun Cheng ◽  
Alim Yasin ◽  
Hailey Lim ◽  
...  

This paper provides an overview of the current state-of-the-art digital twin and digital thread technology in industrial operations. Both are transformational technologies that have the advantage of improving the efficiency of current design and manufacturing. Digital twin is an important element of the Industry 4.0 digitalization process; however, the huge amount of data that are generated and collected by a digital twin offer challenges in handling, processing and storage. The paper aims to report on the development of a new framework that combines the digital twin and digital thread for better data management in order to drive innovation, improve the production process and performance and ensure continuity and traceability of information. The digital twin/thread framework incorporates behavior simulation and physical control components, in which these two components rely on the connectivity between the twin and thread for information flow and exchange to drive innovation. The twin/thread framework encompasses specifications that include organizational architecture layout, security, user access, databases and hardware and software requirements. It is envisaged that the framework will be applicable to enhancing the optimization of operational processes and traceability of information in the physical world, especially in an Industry Shipyard 4.0.

Author(s):  
Toh Yen Pang ◽  
Juan D. Pelaez Restrepo ◽  
Ben Cheng ◽  
Alim Yasin ◽  
Hailey Lim ◽  
...  

This paper provides an overview of the current state-of-the-art digital twin and digital thread technology in industrial operations. Both are transformational technologies that have the advantage of improving the efficiency of current design and manufacturing. Digital twin is an important element of the Industry 4.0 digitalization process; however, the huge amount of data that are generated and collected by digital twin offer challenges in handling, processing and storage. The paper aims to report on the development of a new framework that combines the digital twin and digital thread for better data management in order to drive innovation, improve the production process and performance, and to ensure continuity and traceability of information. The digital twin/thread framework incorporated behavior simulation and physical control components, in which these two components rely on the connectivity between the twin and thread for information flow and exchange to drive innovation. The twin/thread framework encompasses specifications that include organizational architecture layout, security, user access, cloud computing set-up, and hardware and software requirements. It is envisaged that the framework will be applicable to enhancing optimization of operational processes and traceability of information in the physical world, especially in Industry Shipyard 4.0.


Author(s):  
Blaž Rodič

This chapter presents the evolution of simulation modelling methodology in the context of the Industry 4.0 paradigm and the development of autonomous, self-organizing manufacturing systems. Such a system is managed by a decision-making system that uses a detailed model of the factory, known as the “digital twin” to monitor and control the manufacturing process and test possible process reorganization scenarios. To allow self-organization within the physical world, the “digital twin” model must itself be self-organizing. That means that the structure of the simulation model can be constructed from process data, which is a novel concept, called data-driven modelling. As self-organization leads to the reorganization of existing elements and their relationships within a system, we can treat such manufacturing systems as autopoietic. The chapter introduces the Industry 4.0 paradigm and its background and presents the main self-organizing manufacturing concepts, and the state of technology supporting these concepts.


2018 ◽  
pp. 43-49 ◽  
Author(s):  
I. V. Tarasov

In article are considered concept and concepts of the Industry 4.0, being characterized by introduction of "cyberphysical systems" in factory processes. In article four principles of the concept of the fourth industrial revolution are proved: functional compatibility of the person and the car – opportunity to contact directly on the Internet; transparency of information and ability of systems to create the virtual copy of the physical world; technical assistance of cars to the person – association of large volumes of data and performance of a number of unsafe tasks for the person; abilities of systems independently and independently to make decisions.


2020 ◽  
Vol 10 (1) ◽  
pp. 377-385 ◽  
Author(s):  
Antti Liljaniemi ◽  
Heikki Paavilainen

AbstractDigital Twin (DT) technology is an essential technology related to the Industry 4.0. In engineering education, it is important that the curricula are kept up-to-date. By adopting new digital technologies, such as DT, we can provide new knowledge for students, teachers, and companies. The main aim of this research was to create a course concept to research benefits and barriers of DT technology in engineering education. The research confirmed earlier findings concerning digitalization in engineering education. DT technology can increase motivation for studying and improve learning when applied correctly.


2020 ◽  
Vol 53 (2) ◽  
pp. 10867-10872
Author(s):  
Luige Vlădăreanu ◽  
Alexandru I. Gal ◽  
Octavian D. Melinte ◽  
Victor Vlădăreanu ◽  
Mihaiela Iliescu ◽  
...  
Keyword(s):  

2020 ◽  
Vol 13 (6) ◽  
pp. 673-678
Author(s):  
Wynand Jacobus van der Merwe Steyn

AbstractThe world is becoming a hyper-connected environment where an abundance of data from sensor networks can provide continuous information on the behaviour and performance of infrastructure. The last part of the 3rd Industrial Revolution (IR) and the start of the 4th IR gave rise to a world where this overabundance of sensors, and availability of wireless networks enables connections between people and infrastructure that was not practically comprehensible during the 20th century. 4IR supports the datafication of life, data science, big data, transportation evolution, optimization of logistic and supply chains and automation of various aspects of life, including vehicles and road infrastructure. The hyper-connected 4IR environment allows integration between the physical world and digital and intelligent engineering, increasingly serving as the primary lifecycle management systems for engineering practitioners. With this background, the paper evaluates a few concepts of the hyper-connected pavement environment in a 4IR Digital Twin mode, with the emphasis on selected applications, implications, benefits and limitations. The hyper-connected world can and should be managed in the pavement realm to ensure that adequate and applicable data are collected regarding infrastructure, environment and users to enable a more efficient and effective transportation system. In this regard, and planning for future scenarios where the proliferation of data is a given, it is important that pavement engineers understand what is possible, evaluate the potential benefits, conduct cost/benefit evaluations, and implement appropriate solutions to ensure longevity and safety of pavement infrastructure.


Author(s):  
Maria G. Juarez ◽  
Vicente J. Botti ◽  
Adriana S. Giret

Abstract With the arises of Industry 4.0, numerous concepts have emerged; one of the main concepts is the digital twin (DT). DT is being widely used nowadays, however, as there are several uses in the existing literature; the understanding of the concept and its functioning can be diffuse. The main goal of this paper is to provide a review of the existing literature to clarify the concept, operation, and main characteristics of DT, to introduce the most current operating, communication, and usage trends related to this technology, and to present the performance of the synergy between DT and multi-agent system (MAS) technologies through a computer science approach.


2021 ◽  
Vol 25 (1) ◽  
pp. 35-39
Author(s):  
Łukasz Glodek ◽  
Szymon Bysko ◽  
Witold Nocoń

This paper proposes a model quality assessment method based on Support Vector Machine, which can be used to develop a digital twin. This work is strongly connected with Industry 4.0, in which the main idea is to integrate machines, devices, systems, and IT. One of the goals of Industry 4.0 is to introduce flexible assortment changes. Virtual commissioning can be used to create a simulation model of a plant or conduct training for maintenance engineers. On a branch of virtual commissioning is a digital twin. The digital twin is a virtual representation of a plant or a device. Thanks to the digital twin, different scenarios can be analyzed to make the testing process less complicated and less time-consuming. The goal of this work is to propose a coefficient that will take into account expert knowledge and methods used for model quality assessment (such as Normalized Root Mean Square Error – NRMSE, Maximum Error – ME). NRMSE and ME methods are commonly used for this purpose, but they have not been used simultaneously so far. Each of them takes into consideration another aspect of a model. The coefficient allows deciding whether the model can be used for digital twin appliances. Such an attitude introduces the ability to test models automatically or in a semi-automatic way.


Sign in / Sign up

Export Citation Format

Share Document