scholarly journals Blockchain-Based Secured Access Control in an IoT System

2021 ◽  
Vol 11 (4) ◽  
pp. 1772
Author(s):  
Sultan Algarni ◽  
Fathy Eassa ◽  
Khalid Almarhabi ◽  
Abduallah Almalaise ◽  
Emad Albassam ◽  
...  

The distributed nature of Internet of Things (IoT) and its rapid increase on a large scale raises many security and privacy issues. Access control is one of the major challenges currently addressed through centralized approaches that may rely on a third party and they are constrained by availability and scalability, which may result in a performance bottleneck. Therefore, this paper proposes a novel solution to manage the delivery of lightweight and decentralized secure access control of an IoT system based on a multi-agent system and a blockchain. The main objective of the proposed solution is to build Blockchain Managers (BCMs) for securing IoT access control, as well as allowing for secure communication between local IoT devices. Moreover, the solution also enables secure communication between IoT devices, fog nodes and cloud computing.

2020 ◽  
Vol 12 (17) ◽  
pp. 6960 ◽  
Author(s):  
Muhammad Tahir ◽  
Muhammad Sardaraz ◽  
Shakoor Muhammad ◽  
Muhammad Saud Khan

Blockchain and IoT are being deployed at a large scale in various fields including healthcare for applications such as secure storage, transactions, and process automation. IoT devices are resource-constrained, have no capability of security and self-protection, and can easily be hacked or compromised. Furthermore, Blockchain is an emerging technology with immutability features which provide secure management, authentication, and guaranteed access control to IoT devices. IoT is a cloud-based internet service in which processing and collection of user’s data are accomplished remotely. Smart healthcare also requires the facility to provide the diagnosis of patients located remotely. The smart health framework faces critical issues such as data security, costs, memory, scalability, trust, and transparency between different platforms. Therefore, it is important to handle data integrity and privacy as the user’s authenticity is in question due to an open internet environment. Several techniques are available that primarily focus on resolving security issues i.e., forgery, timing, denial of service and stolen smartcard attacks, etc. Blockchain technology follows the rules of absolute privacy to identify the users associated with transactions. The motivation behind the use of Blockchain in health informatics is the removal of the centralized third party, immutability, improved data sharing, enhanced security, and reduced overhead costs in distributed applications. Healthcare informatics has some specific requirements associated with the security and privacy along with the additional legal requirements. This paper presents a novel authentication and authorization framework for Blockchain-enabled IoT networks using a probabilistic model. The proposed framework makes use of random numbers in the authentication process which is further connected through joint conditional probability. Hence, it establishes a secure connection among IoT devices for further data acquisition. The proposed model is validated and evaluated through extensive simulations using the AVISPA tool and the Cooja simulator, respectively. Experimental results analyses show that the proposed framework provides robust mutual authenticity, enhanced access control, and lowers both the communication and computational overhead cost as compared to others.


Author(s):  
Valentin Cristea ◽  
Ciprian Dobre ◽  
Corina Stratan ◽  
Florin Pop

Security in distributed systems is a combination of confidentiality, integrity and availability of their components. It mainly targets the communication channels between users and/or processes located in different computers, the access control of users / processes to resources and services, and the management of keys, users and user groups. Distributed systems are more vulnerable to security threats due to several characteristics such as their large scale, the distributed nature of the control, and the remote nature of the access. In addition, an increasing number of distributed applications (such as Internet banking) manipulate sensitive information and have special security requirements. After discussing important security concepts in the Background section, this chapter addresses several important problems that are at the aim of current research in the security of large scale distributed systems: security models (which represent the theoretical foundation for solving security problems), access control (more specific the access control in distributed multi-organizational platforms), secure communication (with emphasis on the secure group communication, which is a hot topic in security research today), security management (especially key management for collaborative environments), secure distributed architectures (which are the blueprints for designing and building security systems), and security environments / frameworks.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1687 ◽  
Author(s):  
Mahmood A. Al-shareeda ◽  
Mohammed Anbar ◽  
Selvakumar Manickam ◽  
Iznan H. Hasbullah

The security and privacy issues in vehicular ad hoc networks (VANETs) are often addressed with schemes based on either public key infrastructure, group signature, or identity. However, none of these schemes appropriately address the efficient verification of multiple VANET messages in high-density traffic areas. Attackers could obtain sensitive information kept in a tamper-proof device (TPD) by using a side-channel attack. In this paper, we propose an identity-based conditional privacy-preserving authentication scheme that supports a batch verification process for the simultaneous verification of multiple messages by each node. Furthermore, to thwart side-channel attacks, vehicle information in the TPD is periodically and frequently updated. Finally, since the proposed scheme does not utilize the bilinear pairing operation or the Map-To-Point hash function, its performance outperforms other schemes, making it viable for large-scale VANETs deployment.


2019 ◽  
Vol 6 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Yasmine Labiod ◽  
Abdelaziz Amara Korba ◽  
Nacira Ghoualmi-Zine

In the recent years, the Internet of Things (IoT) has been widely deployed in different daily life aspects such as home automation, electronic health, the electric grid, etc. Nevertheless, the IoT paradigm raises major security and privacy issues. To secure the IoT devices, many research works have been conducted to counter those issues and discover a better way to remove those risks, or at least reduce their effects on the user's privacy and security requirements. This article mainly focuses on a critical review of the recent authentication techniques for IoT devices. First, this research presents a taxonomy of the current cryptography-based authentication schemes for IoT. In addition, this is followed by a discussion of the limitations, advantages, objectives, and attacks supported of current cryptography-based authentication schemes. Finally, the authors make in-depth study on the most relevant authentication schemes for IoT in the context of users, devices, and architecture that are needed to secure IoT environments and that are needed for improving IoT security and items to be addressed in the future.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2992
Author(s):  
Niharika Singh ◽  
Irraivan Elamvazuthi ◽  
Perumal Nallagownden ◽  
Gobbi Ramasamy ◽  
Ajay Jangra

Microgrids help to achieve power balance and energy allocation optimality for the defined load networks. One of the major challenges associated with microgrids is the design and implementation of a suitable communication-control architecture that can coordinate actions with system operating conditions. In this paper, the focus is to enhance the intelligence of microgrid networks using a multi-agent system while validation is carried out using network performance metrics i.e., delay, throughput, jitter, and queuing. Network performance is analyzed for the small, medium and large scale microgrid using Institute of Electrical and Electronics Engineers (IEEE) test systems. In this paper, multi-agent-based Bellman routing (MABR) is proposed where the Bellman–Ford algorithm serves the system operating conditions to command the actions of multiple agents installed over the overlay microgrid network. The proposed agent-based routing focuses on calculating the shortest path to a given destination to improve network quality and communication reliability. The algorithm is defined for the distributed nature of the microgrid for an ideal communication network and for two cases of fault injected to the network. From this model, up to 35%–43.3% improvement was achieved in the network delay performance based on the Constant Bit Rate (CBR) traffic model for microgrids.


Author(s):  
Nurul Fatini Azhar ◽  
Qi Jie Ngoo ◽  
Tae Hyun Kim ◽  
Kohei Dozono ◽  
Fatima tuz Zahra

Communication between devices has transitioned from wired to unwired. Wireless networks have been in use widely around the globe since the advent of smartphones, IoT devices and other technologies that are compatible with wireless mode of communication. At the same time security issues have also increased in such communication methods. The aim of this paper is to propose security and privacy issues of the wireless networks and present them through comprehensive surveys. In context of security issues, there are 2 typical DDoS attacks - HTTP flood and SYN flood. Other than DDoS attacks, there are several other threats to wireless networks. One of the most prevalent include security issues in Internet of Things. In terms of privacy issues in a wireless network, location-based applications, individual data, cellular network and V2G (Vehicle to Grid) network are surveyed. The survey is hosted using questionnaire and responses of 70 participants is recorded. It is observed from the survey results that many groups of people lack the knowledge of security and privacy of wireless technologies and networks despite their increased use, however, students are relatively more aware and have strong knowledge of those issues. It is concluded from the results that an effective solution to these problems can be hosting campaigns for spreading the security and privacy laws to help the groups of people who are lagging behind in this domain of knowledge become more aware. A unique solution is also presented to overcome the security issues which include implementation of detection and mitigation techniques, implementing Blockchain in the IoT devices and implementing fog computing solutions. The unique solutions to overcome the privacy issues are proposed in the form of a privacy approach from the LBS server between pairs of users to increase the implementation of DSPM and blockchain as a solution.


Entropy ◽  
2016 ◽  
Vol 18 (3) ◽  
pp. 76 ◽  
Author(s):  
Adam Sȩdziwy ◽  
Leszek Kotulski

Author(s):  
P.Chinnasamy Et al.

The evolving agricultural technologies used mostly for remote access and modernization in farming connected via the Internet of Things (IoT) have been grown rapidly. However because of the wide size of all its broadcaster's propagandizing existence, it has some significant concerns with respect to security and privacy. We utilize blockchain to address such security breaches, allowing the development of a decentralized distributed blockchain system that's also exchanged between the IoT cluster heads. This article's major focus is provide smart greenhouse farmlands with a portable blockchain-based infrastructure which offers integrity and confidentiality. Where, green-house IoT sensor nodes are function as a blockchain centrally controlled to optimize the energy consumption by utilizing secure immutable ledgers. Furthermore, we present a significant solution that integrates blockchain technology via IoT devices to offer Smart Greenhouse cultivation with an enhanced secure communication.


Sign in / Sign up

Export Citation Format

Share Document