Prediction of Shield Tunnelling-Induced Ground Settlement Considering Soil-Water Coupled and around Soil Disturbance Damage

2010 ◽  
Vol 168-170 ◽  
pp. 357-364
Author(s):  
Ji Feng Liu ◽  
Bo Liu ◽  
Hui Zhi Zhang

to evaluate the influence of soil-water coupled and shield tunnel construction induced around soil disturbance damage on ground surface settlement, the process of shield tunnel construction induced around soil disturbance is analyzed, the FLAC3D numerical simulation are carried out, and a newly-modified tunnelling-induced ground settlement calculation method based on disturbance degree of around soil and soil-water coupled is presented, and these methods are applied in case of Beijing Metro 10thLine. It is indicated that considering the influence of the shield tunnelling-induced around soil disturbance damage, and soil-water coupled induced soil properties weakening and the excess pore water pressure dissipating induced soil consolidation to the ground surface settlement are necessary, the calculating result of the newly-modified surface settlement prediction method, and the result FLAC3D numerical simulation all agree well with in-site observed data of Beijing Metro 10th Line.

2011 ◽  
Vol 117-119 ◽  
pp. 721-725 ◽  
Author(s):  
Cheng Ping Zhang ◽  
Li Min Li ◽  
He Li ◽  
Jian Chen Wang

Ground settlement, especially the ground surface settlement induced by subway tunneling is an important issue. However, there is no an agreed standard for controlling ground surface settlement during the subway construction at present. The control standard of ground surface settlement was studied using the methods of statistical analysis and numerical simulation based on the running tunnel in Beijing subway. According to the research results, a conclusion could be obtained that the ground surface settlement can be controlled within 40 mm using the general construction measures in Beijing subway running tunnel construction, and furthermore, the settlement of 40mm will not damage the existing nearby structures and utilities including neighboring buildings, bridges and pipelines, etc. So the control valve of 40 mm is rational, which can be adopted as the control standard of ground surface settlement induced by running tunnel construction in Beijing subway.


2020 ◽  
Vol 10 (14) ◽  
pp. 5002
Author(s):  
Zhongzheng Wang ◽  
Dalong Jin ◽  
Chenghua Shi

This study aims to investigate the effect of the spatial variability of grouting-layer thickness on ground-surface settlement caused by shield tunneling and to provide a rational prediction method. The spatial characteristics of grouting layers were obtained based on statistical analysis. The random finite element method was used to study the effect of spatial variability of different parameters on ground-surface settlement. Simulation results indicate that the spatial variability of the grouting layer has a negative impact on ground settlement. The surface settlement will be underestimated without considering the spatial characteristics of the grouting layer. Thus, a reliable prediction approach of the maximum ground settlement was proposed to control the construction quality.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Changsheng Wu ◽  
Zhiduo Zhu

The tail void grouting is a key step in shield tunnel construction and has an important influence on the loading on the surrounding soil and on the resulting settlement. In order to estimate the ground surface settlement caused by tail void grouting pressure in tunnel construction, the loading on the surrounding soil is simplified as an expansion problem of the cylindrical cavity in semi-infinite elastic space. A simple analytical formula is deduced by using the virtual image technique and Fourier transform solutions. The effectiveness of the proposed method is verified by case studies. The effects of elastic modulus, tail void grouting pressure, tunnel radius, and tunnel depth on the ground surface heave are conducted. The results indicate that the computed results are in accordance with Ye’s solution and it is more rational to consider the ground surface heave induced by tail void grouting pressure in the prediction of ground settlement due to shield excavation. Moreover, the ground surface heave owing to tail void grouting pressure resembled a Gaussian distributed curve. Thus, no matter the ground surface subsidence or ground surface heave can be predicted by means of adding the presented empirical formula to the Peck formula which cannot predict the ground surface heave. The ground surface heave decreases with an increase in elastic modulus. On the contrary, as the tail void grouting pressure and tunnel radius increase, the ground surface heave increases, respectively. The ground surface heave first steadily increases and then declines gradually with the tunnel depth increase.


2013 ◽  
Vol 671-674 ◽  
pp. 1081-1086 ◽  
Author(s):  
Fei Fei Wang ◽  
Hui Ren Bai ◽  
Jing Jing Li

In order to study the Dalian Metro section 202(Cujin Road station-Chunguang Street station, which is shallowly buried and covered with plain fill)’s ground surface settlement, the monitoring measuring station was built during the construction. After 3 months’ measuring by precision level,the data shows that the maximum point is in the center line of the tunnel of the upper part. The settlement is about 25.66-31.82mm. This paper put forward the concept of the distance span ratio β, β effective value range was - 4 <β< 4,Surface subsidence is closely related with β, Severe surface subsidence stage is -2 <β< 2, Occupy whole deformation is 67.5-77.6%,settlement rate about 0.84-0.93mm/d, so should strengthen the monitoring frequency, Suggest increases site tour. Field test results and the ground surface settlement calculation model winkle are identical with each other; the monitoring results have important guiding significance and reference for Dalian subway and the similar shallow depth excavation tunnel construction.


1998 ◽  
Vol 35 (1) ◽  
pp. 159-168 ◽  
Author(s):  
Chang-Yu Ou ◽  
Richard N Hwang ◽  
Wei-Jung Lai

This paper presents the surface settlement performance induced by the foamed type of earth pressure balance shield in contract CH218 of the Hsintien Line of the Taipei Rapid Transit System. The surface settlement characteristics caused by the single tunnel and by twin tunnels with reference to two sections spaced at 87 m are studied. Field observations indicate that the surface settlement trough due to the single tunnel can be represented by the normal distribution. The distance of the inflection point to the tunnel center and maximum surface settlement value are consistent with those found in the literature. The characteristics of the surface settlement trough are related to the type of the soil, particularly where the crown of the tunnel is located in a layered soil deposit. The ground surface settlement induced by twin tunnels was found to be larger than estimated using the principle of superposition.Key words: shield tunnelling, surface settlement, field observation.


2013 ◽  
Vol 734-737 ◽  
pp. 502-506
Author(s):  
Meng Lin Xu ◽  
De Shen Zhao

The shield tunneling will be bound to disturb surrounding strata, induced stress redistribution in soil, soil deformation and surface subsidence. We analyzed characteristics of soil disturbance by shield tunneling with numerical simulation. To provide technical support for the future urban shield tunnel construction. It shows practically significant in studying shield tunnel construction.


2011 ◽  
Vol 261-263 ◽  
pp. 1049-1053
Author(s):  
Zhi Ding ◽  
Guo Bao Ge ◽  
Xin Jiang Wei ◽  
Jie Hong

Considering different types of building structure and foundation, the system refers to acceptable ground settlement and acceptable soil loss ratio was established by establishing the control of building’s bending and deformation. The system which adopted Delphi dynamic data binding technology and used Access as database was developed by Delphi7.0 visual tools. The system which named "Analysis system about shield tunnel construction to adjacent buildings" is developed to judge the extent of damage of buildings influenced by adjacent shield tunnel construction.


2021 ◽  
Author(s):  
Ali Kazempour Osalou ◽  
sayfoddin moosazadeh ◽  
Ali Nouri Qarahasanlou

Abstract Nowadays, tunnel excavation plays a major role in development of countries. Due to the complex and challenging ground conditions, a comprehensive study and analysis must be done before, during and also after the excavation of tunnels. Hence, the importance of study and evaluation of ground settlement are dramatically increased, since many tunnel projects are performed in the urban areas where there are plenty of constructions, buildings and facilities. For this reason, the control and prediction of ground settlement is one of the complicated topic in the fields of risk engineering. Therefore, in this paper, proportional hazard model (PHM) is used to analyze and study the ground settlement induced by Tabriz Metro Line 2 (TML2) tunneling. The PHM method is a semi-parametric regression method that can enter environmental conditions or factors affecting settlement probability. These influential factors are used as risk factors in the analysis. After establishing a database for a case study and using proportional hazard model for surface settlement analysis, and then, by evaluating the effect of environmental conditions on the ground surface settlement, it has been found that the risk factors of grouting pressure behind the segment, the ratio of tunnel depth to groundwater level, and drained cohesion strength at a significant level of 5% have a direct effect on the probability of settlement. The results also showed that the effect of grout injection pressure on ground subsidence is more than other parameters, and with increasing injection pressure, the probability of exceeding safe subsidence values decreases. In addition, it has been found that increasing the risk factor for the ratio of tunnel depth to groundwater level reduces the probability of exceeding the safe ground settlement. Finally, increasing the number of risk factors for drained cohesion strength increases the probability of exceeding safe settlement.


Sign in / Sign up

Export Citation Format

Share Document