scholarly journals Estimation of Optimal Speed Limits for Urban Roads Using Traffic Information Big Data

2021 ◽  
Vol 11 (12) ◽  
pp. 5710
Author(s):  
Hyungkyu Kim ◽  
Doyoung Jung

The use of an inconsistent speed limit determination method can cause low speed limit compliance. Therefore, we developed an objective methodology based on engineering judgment considering the traffic accident rate in road sections, the degree of roadside development, and the geometric characteristics of road sections in urban roads. The scope of this study is one-way roads with two or more lanes in cities, and appropriate sections were selected among all roads in Seoul. These roads have speed limits of the statutory maximum speed of 80 km/h or lower and are characterized by various speeds according to the function of the road, the roadside development, and traffic conditions. The optimal speed limits of urban roads were estimated by applying the characteristics of variables as adjustment factors based on the statutory maximum speed limit. As a result of investigating and testing various influence variables, the function of roads, the existence of median, the level of curbside parking, the number of roadside access points, and the number of traffic breaks were selected as optional variables that influence the operating speed. The speed limit of one-way roads with two or more lanes in Seoul was approximately 10 km/h lower than the current speed limit. The existing speed limits of the roads were applied uniformly considering only the functional road class. However, considering the road environment, the speed limit should be applied differently for each road. In the future, if the collection scope and real-time collection of road environment information can be determined, the GIS visualization of traffic safety information will be possible for all road sections and the safety of road users can be ensured.

Author(s):  
Tomislav Petrović ◽  
Miloš Milosavljević ◽  
Milan Božović ◽  
Danislav Drašković ◽  
Milija Radović

The application of intelligent transport systems (hereinafter ITSs) on roads enables continuous monitoring of road users during a whole year with the aim to collect good-quality data based on which the more complex analyses could be done, such as monitoring of certain traffic safety indicators. Automatic traffic counters are one of the most commonly implemented ITSs for collecting traffic flow parameters that are relevant for traffic management on state roads in Republic of Serbia. This paper presents one of the possible ways to collect, analyze and present data on road users’ speeds using automatic traffic counters, where certain traffic safety indicators are analyzed in terms of road users’ compliance with the speed limit on the road section from Mali Pozarevac to Kragujevac. Based on the analyses of data downloaded from automatic traffic counters, it is observed that an extremely high percentage of vehicles drive at speed higher than the speed limit, indicating clearly to higher traffic accident risk, as well as to the need for a tendency to implement speed management on roads using ITS in the forthcoming period.


Author(s):  
Jacob Warner ◽  
Hitesh Chawla ◽  
Chao Zhou ◽  
Peter T. Savolainen

The relationship between traffic safety and speed limits has been an area of significant research. Since the repeal of the National Maximum Speed Law in 1995, states have full autonomy in establishing maximum statutory speed limits. Since 2001, at least 25 states have increased their maximum limits to speeds as high as 85 mph. This study examines changes in rural interstate fatalities from 2001 to 2016 in consideration of such increases. Speed limit policy data include the maximum speed limit for each state–year combination, as well as the proportion of rural interstate mileage posted at each speed limit in each state. Random parameter negative binomial models are estimated to control for unobserved heterogeneity, as well as time-invariant effects unique to each state. The results show that increasing the mileage of rural interstates posted at 70, 75, or 80 mph by 1% is associated with fatality increases of 0.2%, 0.5%, and 0.6%, respectively. These increases are more pronounced than when considering only the maximum statutory limits in each state. The study also examines the influence between these higher limits and the frequency of fatal crashes involving speeding and driver distraction. At the highest limits of 75 and 80 mph, the increases among these subsets of crashes are greater than the increases in total fatalities. Ultimately, this study provides important empirical evidence in support of continuing speed limit policy discussions, in addition to identifying salient analytical concerns that should be considered as a part of longitudinal analyses of state-level fatality data.


Author(s):  
Do Duy Dinh ◽  
Thai Hong Nam ◽  
Vu Hoai Nam

This study is to assess the effects of raising speed limits to vehicle operating speeds on rural divided highways in Vietnam. Vehicle speeds were recorded at three different sites of three routes during the daytime and nighttime, both before and after speed limits on these sites increasing from 80 km/h to 90 km/h. The results have shown that the percentage of speeds exceeding speed limits had a wide range from 0% to nearly 30% with regard to different locations, survey time and speed limits. The extent of speeding in some cases was very high even after speed limit increased. It was found that in most cases, the changes in mean speeds after a higher speed limit was applied were statistically significant at the p-value of 0.05, however, the magnitudes of the mean change varied considerably between locations and survey times. Because four out of six cases under the study having mean speeds increased by over 10 km/h after setting up a higher speed limit, this study suggests that further appropriate measures of speed control and speed management should be applied along with increasing speed limit to ensure traffic safety on rural divided highways in Vietnam. Article history: Received 27 March 2018, Revised 18 April 2018, Accepted 27 April 2018


2021 ◽  
Vol 67 (4) ◽  
pp. 1-8
Author(s):  
Jacob Adedayo Adedeji ◽  
Xoliswa Feikie

Road traffic fatality is rated as one of the ten causes of death in the world and with various preventive measures on a global level, this prediction is only placed on flat terrain and didn’t reduce. Nevertheless, road users’ communication is an essential key to traffic safety. This communication, be it formal or informal between the road users is an important factor for smooth traffic flow and safety. Communication language on roads can be categorized into; formal device-based signal (formal signal), formal hand signal (formal signal), informal device-based signal (informal signal), and informal gesture-based signal (everyday signal). However, if the intent of the message conveys is not properly understood by the other road user, mistakes and errors may set in. Overall, the formal signal is based on explicit learning which occurs during the driving training and the license testing process and the informal, implicit learning occur during the actual driving process on the road unintentionally. Furthermore, since the informal signal is not a prerequisite to driving or taught in driving schools, novice drivers are clueless and thus, might have contributed to errors and mistakes which leads to traffic fatalities. Therefore, this study seeks to document the informal means of communication between drivers on South African roads. Consequently, a qualitative semi-structured interview questionnaire would be used in the collection of informal signals, which were predominantly used on South African roads from driving instructors and thereafter, a focus group of passengers’ car, commercial and truck drivers will be used to validate the availability and their understanding of these informal signals using a Likert-type scale for the confidence level. In conclusion, the information gathered from this study will help improve road safety and understanding of road users especially drivers on the necessity of communication and possible adaptation for other developing countries.


1997 ◽  
Vol 1587 (1) ◽  
pp. 113-120
Author(s):  
Maureen A. Mullen ◽  
James H. Wilson ◽  
Laura Gottsman ◽  
Robert B. Noland ◽  
William L. Schroeer

The National Highway System (NHS) bill passed by Congress in November 1995 eliminated the national maximum speed limit. It has allowed states to set their own speed limits, which many have changed during the past year. This analysis examines the impact of speed limit changes 1 year after passage of the NHS. Oxides of nitrogen (NOx), carbon monoxide, and volatile organic compounds are analyzed and are found to have increased nationwide by up to 6, 7, and 2 percent, respectively. Much of the increase has occurred in western states, which generally have increased vehicle speeds more than in eastern and midwestern states. For example, in Texas NOx emissions are estimated to have increased by 35 percent due to large increases in highway and arterial speed limits.


2019 ◽  
Vol 26 (2) ◽  
pp. 99-102 ◽  
Author(s):  
Wen Hu ◽  
Jessica B Cicchino

IntroductionEffective 9 January 2017, the default speed limit on Boston streets was reduced from 30 mph to 25 mph. This study evaluated the effects of the speed limit reduction on speeds in Boston.MethodVehicle speeds were collected at sites in Boston where the speed limit was lowered, and at control sites in Providence, Rhode Island, where the speed limit remained unchanged, before and after the speed limit change in Boston. A log-linear regression model estimated the change in vehicle speeds associated with the speed limit reduction. Separate logistic regression models estimated changes in the odds of vehicles exceeding 25 mph, 30 mph and 35 mph associated with the lower speed limit.ResultsThe speed limit reduction was associated with a 0.3 % reduction in mean speeds (p=0.065), and reductions of 2.9%, 8.5% and 29.3 % in the odds of vehicles exceeding 25 mph, 30 mph and 35 mph, respectively. All these reductions were statistically significant.ConclusionsLocal communities should consider lowering speed limits to reduce speeds and improve safety for all road users. The current practice of setting speed limits according to the 85th percentile free-flow speeds, without consideration of other characteristics of the roadway, can be a hurdle for local communities looking to lower speed limits. Updated state laws that allow municipalities to set lower speed limits on urban streets without requiring costly engineering studies can provide flexibility to municipalities to set speed limits that are safe for all road users.


2017 ◽  
Vol 28 (04) ◽  
pp. 321-333 ◽  
Author(s):  
Benjamin Russell ◽  
Susan Stepney

We study the maximum speed of quantum computation and how it is affected by limitations on physical resources. We show how the resulting concepts generalize to a broader class of physical models of computation within dynamical systems and introduce a specific algebraic structure representing these speed limits. We derive a family of quantum speed limit results in resource-constrained quantum systems with pure states and a finite dimensional state space, by using a geometric method based on right invariant action functionals on [Formula: see text]. We show that when the action functional is bi-invariant, the minimum time for implementing any quantum gate using a potentially time-dependent Hamiltonian is equal to the minimum time when using a constant Hamiltonian, thus constant Hamiltonians are time optimal for these constraints. We give an explicit formula for the time in these cases, in terms of the resource constraint. We show how our method produces a rich family of speed limit results, of which the generalized Margolus–Levitin theorem and the Mandelstam–Tamm inequality are special cases. We discuss the broader context of geometric approaches to speed limits in physical computation, including the way geometric approaches to quantum speed limits are a model for physical speed limits to computation arising from a limited resource.


2021 ◽  
Vol 67 (4) ◽  
pp. 1-8
Author(s):  
Jacob Adedayo Adedeji ◽  
Xoliswa E Feikie

Road traffic fatality is rated as one of the ten causes of death in the world and with various preventive measures on a global level, this prediction is only placed on flat terrain and didn’t reduce. Nevertheless, road users’ communication is an essential key to traffic safety. This communication, be it formal or informal between the road users is an important factor for smooth traffic flow and safety. Communication language on roads can be categorized into; formal device-based signal (formal signal), formal hand signal (formal signal), informal device-based signal (informal signal), and informal gesture-based signal (everyday signal). However, if the intent of the message conveys is not properly understood by the other road user, mistakes and errors may set in. Overall, the formal signal is based on explicit learning which occurs during the driving training and the license testing process and the informal, implicit learning occur during the actual driving process on the road unintentionally. Furthermore, since the informal signal is not a prerequisite to driving or taught in driving schools, novice drivers are clueless and thus, might have contributed to errors and mistakes which leads to traffic fatalities. Therefore, this study seeks to document the informal means of communication between drivers on South African roads. Consequently, a qualitative semi-structured interview questionnaire would be used in the collection of informal signals, which were predominantly used on South African roads from driving instructors and thereafter, a focus group of passengers’ car, commercial and truck drivers will be used to validate the availability and their understanding of these informal signals using a Likert-type scale for the confidence level. In conclusion, the information gathered from this study will help improve road safety and understanding of road users especially drivers on the necessity of communication and possible adaptation for other developing countries.


Author(s):  
Mbelle Samuel Bisong ◽  
Paune Felix ◽  
Lokoue D. Romaric Brandon ◽  
Pierre Kisito Talla

Road security has become with time a topic of concern in our society as per the increasing number of accidents and deaths occurring on the highways. Regulatory experts on road users have constantly been working for ways to solve this problem and thence better the lives of the citizens. This paper is aimed at proposing a mathematical model integrating specific parameters, describing the dynamic lateral behavior of a vehicle’s tire and chassis systems and enabling to state a relationship between road characteristics and vehicle dynamics. To achieve this, we made used of the fundamental theorems of dynamics for the modeling of the vehicle’s suspended and non-suspended masses and load transfers, then we associated this with the Pacejka Tire model to obtain a complete vehicle model. After the particularization of a global model, a simulator was realized named “DYNAUTO SIMULATOR” which iterates the given variables to produce a consistent result. After an experimental research made on the Ndokoti – PK 24 road section we could, thanks to our simulator determine the maximum speed to have at every turn of this road section and also understand the effect of the modification of a vehicle’s center of gravity on its stability. This work will be an important tool which can be recommended to the regulatory board as a major asset in the road construction policy and also in the improvement of road safety measures.


2020 ◽  
Vol 9 (2) ◽  
pp. 24-41
Author(s):  
Alex Kizito ◽  
Agnes Rwashana Semwanga

Simplistic representations of traffic safety disregard the dynamic interactions between the components of the road transport system (RTS). The resultant road accident (RA) preventive measures are consequently focused almost solely on individual/team failures at the sharp end of the RTS (mainly the road users). The RTS is complex and therefore cannot be easily understood by studying the system parts in isolation. The study modeled the occurrence of road accidents in Uganda using the dynamic synthesis methodology (DSM). This article presents the work done in the first three stages of the DSM. Data was collected from various stakeholders including road users, traffic police officers, road users, and road constructors. The study focused on RA prevention by considering the linear and non-linear interactions of the variables during the pre-crash phase. Qualitative models were developed and from these, key leverage points that could possibly lower the road accident incidences demonstrating the need for a shared system wide responsibility for road safety at all levels are suggested.


Sign in / Sign up

Export Citation Format

Share Document