scholarly journals DC-DC Zeta Power Converter: Ramp Compensation Control Design and Stability Analysis

2021 ◽  
Vol 11 (13) ◽  
pp. 5946
Author(s):  
David Angulo-García ◽  
Fabiola Angulo ◽  
Juan-Guillermo Muñoz

The design of robust and reliable power converters is fundamental in the incorporation of novel power systems. In this paper, we perform a detailed theoretical analysis of a synchronous ZETA converter controlled via peak-current with ramp compensation. The controller is designed to guarantee a stable Period 1 orbit with low steady state error at different values of input and reference voltages. The stability of the desired Period 1 orbit of the converter is studied in terms of the Floquet multipliers of the solution. We show that the control strategy is stable over a wide range of parameters, and it only loses stability: (i) when extreme values of the duty cycle are required; and (ii) when input and reference voltages are comparable but small. We also show by means of bifurcation diagrams and Lyapunov exponents that the Period 1 orbit loses stability through a period doubling mechanism and transits to chaos when the duty cycle saturates. We finally present numerical experiments to show that the ramp compensation control is robust to a large set of perturbations.

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 57
Author(s):  
Juan-Guillermo Muñoz ◽  
Fabiola Angulo ◽  
David Angulo-Garcia

The boost-flyback converter is a DC-DC step-up power converter with a wide range of technological applications. In this paper, we analyze the boost-flyback dynamics when controlled via a modified Zero-Average-Dynamics control technique, hereby named Zero-Average-Surface (ZAS). While using the ZAS strategy, it is possible to calculate the duty cycle at each PWM cycle that guarantees a desired stable period-1 solution, by forcing the system to evolve in such way that a function that is constructed with strategical combination of the states over the PWM period has a zero average. We show, by means of bifurcation diagrams, that the period-1 orbit coexists with a stable period-2 orbit with a saturated duty cycle. While using linear stability analysis, we demonstrate that the period-1 orbit is stable over a wide range of parameters and it loses stability at high gains and low loads via a period doubling bifurcation. Finally, we show that, under the right choice of parameters, the period-1 orbit controller with ZAS strategy satisfactorily rejects a wide range of disturbances.


Author(s):  
M. X. Zhao ◽  
B. Balachandran ◽  
M. A. Davies ◽  
J. R. Pratt

Abstract In this paper, numerical and experimental investigations conducted into the dynamics and stability of partial immersion milling operations are presented. A mechanics based model is used for simulations of a wide range of milling operations and instabilities that arise due to regeneration and/or impact effects are studied. Poincaré sections are used to assess the stability of motions. The studies reveal that apart from Hopf bifurcation of a periodic motion, a period-doubling bifurcation of a periodic motion may also lead to chatter in partial immersion milling operations. Issues such as tooth contact time variation and structure of stability charts are also discussed.


2008 ◽  
Vol 2008 ◽  
pp. 1-23 ◽  
Author(s):  
Toichiro Asada ◽  
Christos Douskos ◽  
Panagiotis Markellos

We explore a discrete Kaldorian macrodynamic model of an open economy with flexible exchange rates, focusing on the effects of variation of the model parameters, the speed of adjustment of the goods marketα, and the degree of capital mobilityβ. We determine by a numerical grid search method the stability region in parameter space and find that flexible rates cause enhanced stability of equilibrium with respect to variations of the parameters. We identify the Hopf-Neimark bifurcation curve and the flip bifurcation curve, and find that the period doubling cascades which leads to chaos is the dominant behavior of the system outside the stability region, persisting to large values ofβ. Cyclical behavior of noticeable presence is detected for some extreme values of a state parameter. Bifurcation and Lyapunov exponent diagrams are computed illustrating the complex dynamics involved. Examples of attractors and trajectories are presented. The effect of the speed of adaptation of the expected rate is also briefly discussed. Finally, we explore a special model variation incorporating the “wealth effect” which is found to behave similarly to the basic model, contrary to the model of fixed exchange rates in which incorporation of this effect causes an entirely different behavior.


Author(s):  
Maheswari Ellappan ◽  
Kavitha Anbukumar

The renewable energy source plays a major role in the grid side power production. The stability analysis is very essential in the renewable energy converters. In this paper the bifurcation is analyzed in ZETA converter and Continuous input and output(CIO) power Buck Boost converter. The ZETA converter gives positive step down and step up output voltage and the CIO power converter gives the negative step up and step down output voltage. These converters are used in the DC micro grid with renewable energy as the source. The current mode control technique is applied to analyze the bifurcation behavior and the reference current is taken as the bifurcation parameter. When the reference current is varied, both the converters loses its stability and it enters into chaotic region through period doubling bifurcation. The simulation results are presented to study the performance behavior of both the converters. The stability region of both the converters are determined by deriving the Monodromy matrix approach.


1993 ◽  
Vol 134 ◽  
pp. 301-305
Author(s):  
P. Moskalik ◽  
J. R. Buchler

We have performed recently a survey of the nonlinear hydrodynamical models of the BL Her-type variables (Buchler & Moskalik 1992). Within this project we have studied several sequences of models, i.e., families in which onlyTeff has been varied from model to model, while all other stellar parameters have been kept constant. The fundamental mode pulsations of each model have been converged to strict periodicity with the relaxation code (Stellingwerf 1974). Such approach speeds up the calculations and simultaneously yields information about the stability properties of the resulting limit cycles. In all studied sequences except one, we have found a narrow-range of Teff (typically 100-150K), in which regular solution becomes unstable towards a period doubling bifurcation. The instability has its origin in a half-integer resonance, namely the 3:2 coupling between the fundamental mode and the first overtone (cf. Moskalik & Buchler 1990; hereafter MB90). This is the same resonance, which also causes period doubling in the models of classical Cepheids (Moskalik & Buchler 1991). The bifurcation leads to stable period-two oscillations, characterized by an RV Tau-like, albeit strictly periodic behavior of all variables. In other words, the pulsation light curves and velocity curves will exhibit two alternating minima (as well as maxima) of different values.


2021 ◽  
Vol 926 ◽  
Author(s):  
Qiuxiang Huang ◽  
Fang-Bao Tian ◽  
John Young ◽  
Joseph C.S. Lai

The nonlinear dynamics of a two-sided collapsible channel flow is investigated by using an immersed boundary-lattice Boltzmann method. The stability of the hydrodynamic flow and collapsible channel walls is examined over a wide range of Reynolds numbers $Re$ , structure-to-fluid mass ratios $M$ and external pressures $P_e$ . Based on extensive simulations, we first characterise the chaotic behaviours of the collapsible channel flow and explore possible routes to chaos. We then explore the physical mechanisms responsible for the onset of self-excited oscillations. Nonlinear and rich dynamic behaviours of the collapsible system are discovered. Specifically, the system experiences a supercritical Hopf bifurcation leading to a period-1 limit cycle oscillation. The existence of chaotic behaviours of the collapsible channel walls is confirmed by a positive dominant Lyapunov exponent and a chaotic attractor in the velocity-displacement phase portrait of the mid-point of the collapsible channel wall. Chaos in the system can be reached via period-doubling and quasi-periodic bifurcations. It is also found that symmetry breaking is not a prerequisite for the onset of self-excited oscillations. However, symmetry breaking induced by mass ratio and external pressure may lead to a chaotic state. Unbalanced transmural pressure, wall inertia and shear layer instabilities in the vorticity waves contribute to the onset of self-excited oscillations of the collapsible system. The period-doubling, quasi-periodic and chaotic oscillations are closely associated with vortex pairing and merging of adjacent vortices, and interactions between the vortices on the upper and lower walls downstream of the throat.


2019 ◽  
Vol 256 ◽  
pp. 04005
Author(s):  
Yu-Chi Wu ◽  
Jiajun Lin ◽  
Jun-Han Chen ◽  
Hsieh Ming-Yu

As renewable energy is widely used, distributed power generation systems are also used in wide range. However, some problems in renewable power systems have to be addressed. Among these problems, the islanding operation has the most important impact to the safety of utility workers and the service lives of equipment. This paper studies islanding detection for a microgrid system with unbalanced loads and its implementation on a real-time simulator (RT-Lab) to accelerate simulations. The presented islanding detection approach utilizes rate of change of frequency (ROCOF), under/over frequency, and negative sequence current injection methods. Decoupled double synchronous reference frame software phase lock loop (DDSRF-SPLL) is used to synchronize the grid-connected power converter with the utility voltages under unbalanced load conditions. Two cases are tested in real time. The presented approach detects the islanding in 0.09 seconds after the fault occurs, and the voltage at the point of common coupling (PCC) returns stable in 0.1 seconds after the fault occurs, satisfying the IEEE Standard 1547-2003.


2019 ◽  
Author(s):  
Tatiana Woller ◽  
Ambar Banerjee ◽  
Nitai Sylvetsky ◽  
Xavier Deraet ◽  
Frank De Proft ◽  
...  

<p>Expanded porphyrins provide a versatile route to molecular switching devices due to their ability to shift between several π-conjugation topologies encoding distinct properties. Taking into account its size and huge conformational flexibility, DFT remains the workhorse for modeling such extended macrocycles. Nevertheless, the stability of Hückel and Möbius conformers depends on a complex interplay of different factors, such as hydrogen bonding, p···p stacking, steric effects, ring strain and electron delocalization. As a consequence, the selection of an exchange-correlation functional for describing the energy profile of topological switches is very difficult. For these reasons, we have examined the performance of a variety of wavefunction methods and density functionals for describing the thermochemistry and kinetics of topology interconversions across a wide range of macrocycles. Especially for hexa- and heptaphyrins, the Möbius structures have a pronouncedly stronger degree of static correlation than the Hückel and figure-eight structures, and as a result the relative energies of singly-twisted structures are a challenging test for electronic structure methods. Comparison of limited orbital space full CI calculations with CCSD(T) calculations within the same active spaces shows that post-CCSD(T) correlation contributions to relative energies are very minor. At the same time, relative energies are weakly sensitive to further basis set expansion, as proven by the minor energy differences between MP2/cc-pVDZ and explicitly correlated MP2-F12/cc-pVDZ-F12 calculations. Hence, our CCSD(T) reference values are reasonably well-converged in both 1-particle and n-particle spaces. While conventional MP2 and MP3 yield very poor results, SCS-MP2 and particularly SOS-MP2 and SCS-MP3 agree to better than 1 kcal mol<sup>-1</sup> with the CCSD(T) relative energies. Regarding DFT methods, only M06-2X provides relative errors close to chemical accuracy with a RMSD of 1.2 kcal mol<sup>-1</sup>. While the original DSD-PBEP86 double hybrid performs fairly poorly for these extended p-systems, the errors drop down to 2 kcal mol<sup>-1</sup> for the revised revDSD-PBEP86-NL, again showing that same-spin MP2-like correlation has a detrimental impact on performance like the SOS-MP2 results. </p>


2020 ◽  
Vol 21 (3) ◽  
pp. 211-220 ◽  
Author(s):  
Chandrasai Potla Durthi ◽  
Madhuri Pola ◽  
Satish Babu Rajulapati ◽  
Anand Kishore Kola

Aim & objective: To review the applications and production studies of reported antileukemic drug L-glutaminase under Solid-state Fermentation (SSF). Overview: An amidohydrolase that gained economic importance because of its wide range of applications in the pharmaceutical industry, as well as the food industry, is L-glutaminase. The medical applications utilized it as an anti-tumor agent as well as an antiretroviral agent. L-glutaminase is employed in the food industry as an acrylamide degradation agent, as a flavor enhancer and for the synthesis of theanine. Another application includes its use in hybridoma technology as a biosensing agent. Because of its diverse applications, scientists are now focusing on enhancing the production and optimization of L-glutaminase from various sources by both Solid-state Fermentation (SSF) and submerged fermentation studies. Of both types of fermentation processes, SSF has gained importance because of its minimal cost and energy requirement. L-glutaminase can be produced by SSF from both bacteria and fungi. Single-factor studies, as well as multi-level optimization studies, were employed to enhance L-glutaminase production. It was concluded that L-glutaminase activity achieved by SSF was 1690 U/g using wheat bran and Bengal gram husk by applying feed-forward artificial neural network and genetic algorithm. The highest L-glutaminase activity achieved under SSF was 3300 U/gds from Bacillus sp., by mixture design. Purification and kinetics studies were also reported to find the molecular weight as well as the stability of L-glutaminase. Conclusion: The current review is focused on the production of L-glutaminase by SSF from both bacteria and fungi. It was concluded from reported literature that optimization studies enhanced L-glutaminase production. Researchers have also confirmed antileukemic and anti-tumor properties of the purified L-glutaminase on various cell lines.


Sign in / Sign up

Export Citation Format

Share Document