scholarly journals Modeling of Heat Phenomenon in Rolling Kinematic Pairs Using the Finite Element Method

2021 ◽  
Vol 11 (14) ◽  
pp. 6447
Author(s):  
Jan Kosmol

In the spindles of HSC (High Speed Cutting) machines with rolling bearings, higher temperatures in the bearings can be expected, which may affect the resistance to movement of the bearing itself. Therefore, to estimate these resistances, it is necessary to know the temperatures of the bearing components. The article presents the results of FEM simulation tests of temperature distribution in a rolling bearing. These studies were focused on assessing the influence of such features as the distribution of heat sources, the geometric form and size of the contact areas of the balls with the raceways, the conditions of heat convection to the environment and heat conduction inside the bearing. It has been recognized that FEM simulations for the default conditions offered by most commercial FEM systems can lead to out-of-the-box results. As part of the experimental research, conclusions from the simulation studies were verified.

2009 ◽  
Vol 626-627 ◽  
pp. 249-254
Author(s):  
Wang Yu Liu ◽  
X.K. Liu ◽  
Jing Li ◽  
Yong Zhang

Combined the analytic method with the finite element method, the data necessary for calculating the heat distribution ratio for high speed cutting was mined first, and the experimental result was used to validate the authenticity of finite element modeling. Then, the ratio of heat distribution for high speed cutting based on the analytic model was obtained by customizing the special subroutine developed by the authors, which provides a new method for calculating the heat distribution.


2011 ◽  
Vol 101-102 ◽  
pp. 702-707 ◽  
Author(s):  
Zhao Dong Huang ◽  
Bo Qian Fan ◽  
Xiao Ping Ouyang ◽  
Ling Ling Xu ◽  
Zhi Gang Wang

The rolling bearing test rig for heavy vehicles often works under heavy load and high speed, thus it requires high performance for the main shaft and mechanical structure. In this paper a design of test rig for high-speed railway rolling bearings is presented, in which a new structure is adopted to reduce the load on the support bearings. The basic idea is to position the load in a way that they can be balanced by each other.


2001 ◽  
Vol 5 (3) ◽  
pp. 323-340 ◽  
Author(s):  
F. Klocke ◽  
H.-W. Raedt ◽  
S. Hoppe

2006 ◽  
Vol 532-533 ◽  
pp. 753-756 ◽  
Author(s):  
Jun Zhao ◽  
Xing Ai ◽  
Zuo Li Li

The Finite Element Method (FEM) has proven to be an effective technique to investigate cutting process so as to improve cutting tool design and select optimum cutting conditions. The present work focuses on the FEM simulation of cutting forces in high speed cutting by using an orthogonal cutting model with variant undeformed chip thickness under plane-strain condition to mimic intermittent cutting process such as milling. High speed cutting of 45%C steel using uncoated carbide tools are simulated as the application of the proposed model. The updated Lagrangian formulation is adopted in the dynamic FEM simulation in which the normalized Cockroft and Latham damage criterion is used as the ductile fracture criterion. The simulation results of cutting force components under different cutting conditions show that both the thrust cutting force and the tangential cutting force increase with the increase in undeformed chip thickness or feed rate, whereas decrease with the increase in cutting speed. Some important aspects of modeling the high speed cutting are discussed as well to expect the future work in FEM simulation.


2014 ◽  
Vol 625 ◽  
pp. 378-383 ◽  
Author(s):  
Norfariza Wahab ◽  
Yumi Inatsugu ◽  
Satoshi Kubota ◽  
Soo Young Kim ◽  
Hiroyuki Sasahara

Nowadays, numerical simulation technique is very popular to estimate and predict the machining parameters such as cutting forces, stresses distribution, temperature and tool wear. The objective of this study is to determine the 0.45%C steel (JIS S45C) flow stress value under high strain rate and temperature. The Johnson and Cook (JC) material model is used as a constitutive equation to describe the high speed cutting process. Compression test and orthogonal cutting test were carried out in order to obtain the required parameters in JC model. Inverse calculation method was used to determine the strain rate and temperature dependency parameter based on several cutting conditions. As a result, validity of verification of method was completed and the flow stress of S45C had been evaluated.


2011 ◽  
Vol 480-481 ◽  
pp. 962-967 ◽  
Author(s):  
Yan Shuang Wang ◽  
Zhe Liu ◽  
Hai Feng Zhu

Heat generation of a bearing was studied based in this paper. Computational models of power loss were built. The total heat generation was gotten. Influences on total heating were analyzed at various inner ring rolling velocities and applied loads. The results show that bearing rolling velocity and axial load affect heat generation strongly. Meanwhile sliding friction, which exists between balls and the cage pocket, cages and the surface of outer ring, is the main factors of bearing heating. Bearings with shaft are mainly used in gyro motors of aviation, aerospace, marine navigational systems, which own a long life and high reliability. Heat generated by friction affects its performance, life and reliability, and consequently influences control precision and life of gyro motors. If the rate of heat dissipation is less than the rate of the heat generation, the system temperatures will raise, the hardness of bearing ring and rolling element steel decrease, and resulting in plastic deformations, lubricant deterioration occurs, ultimately, heat imbalance failure leads to breakage of bearing components and bearing seizure[1,2].So precise evaluating heat generation of bearings with shaft is important for design, manufacture and application of bearing. The heat generation of bearing comes from power loss of friction. The traditional methods contain the local method and integral method [3]. Palmgren who used the integral method based on experimental results advanced an empirical formula of total friction moment [4]. The calculation result is lower than the fact because ignoring infection of lubricant flux. Astringe and Smith improved the above formula .But it was just for roller bearing. Harris established a local method for the ball bearing and rolling bearing [5]. Pouly et al [6, 7] analyzed part power loss of the high speed rolling bearing based on local method. Compared with the integral method, the local method calculated heating of all heat sources. The results were more accurate. Liu Zhi-quan, Han Min-zheng et al computed the heat of high speed rolling and ball bearing by the local method [8, 9]. This paper studies heat generation mechanism of bearing with shaft from a gyro motor. Different heat sources from bearings are calculated by a self-made program. All factors which influence heat generation would be gotten by analyzing at different working conditions. It would offer a theoretical basis for optimal design and proper use of bearings with shaft.


Author(s):  
Mingxuan Liang ◽  
Tianhong Yan ◽  
Jianhong Hu ◽  
Zhongli Chen

Nonlinear vibration of rotating machinery induced by rolling bearings has gradually become a research issue. In many cases, the rotor discs are not always installed in middle of shaft in actual rotor system, and the influence of disc offset on nonlinear vibration needs to be studied in depth as rotating speed increases. This study deals with the effect mechanism of rotor offset on nonlinear dynamic responses. Nonlinear vibration model of offset rotor is established based on finite element method, and the disc offset position along rotor shaft is concerned. The responses are calculated by Newmark-β integration method, which are also validated by an experimental rig, and the influences of nonlinear parameters of rolling bearings are investigated. The results indicate that disc offset is a crucial factor that can induce more complex nonlinearity coupled with rolling bearing under high-speed conditions.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Suhwan Kim ◽  
Woojin Kim ◽  
Yongdae Kim

AbstractThis paper proposes a new design of bimorph-type electrothermal actuators based on flexible Ni-Co substrates and describes the results of the finite element method (FEM) simulation and performance evaluation of the actuators. In the design of the actuators, a multilayer structure consisting of an adhesion layer, two insulation layers, and a Pt (platinum) heater layer was formed on the Ni-Co flexible substrate that was patterned in an individual shape. The thin-film actuators proposed in this study could be detached from a Si carrier wafer and adhered to other micro or macrostructural elements. To investigate the temperature distribution and mechanical behavior of the actuators, multiphysics FEM simulations combining electrothermal and static structural analyses were carried out. The actuators were fabricated using conventional microfabrication and electroplating technologies on Si carrier wafer; then, the actuators were peeled off from the carrier wafer using the release process proposed in this paper. After fabricating the actuators, the deflection of their tips was evaluated and compared with that obtained from the FEM simulations.


2013 ◽  
Vol 579-580 ◽  
pp. 171-176
Author(s):  
Yang Jun Wang ◽  
Ming Qiang Pan ◽  
Tao Chen ◽  
Li Guo Chen

For investigating the machined surface defects in high-speed cutting of SiCp/Al composites. The simulation and experiment of high-speed cutting process is done. The simulation of high-speed cutting process using the Cowper-Symonds model is established to explore the forming mechanism of the machined surface defects. The results show that the machined surface defects include small pit, big pit, groove and the raised particle. The experiment which uses the same cutting parameters with the simulation of FEM (Finite Element Method) model is carried out to verify the results of FEM simulation. The results indicate that the forming mechanism of machined surface defects prove to be true.


Sign in / Sign up

Export Citation Format

Share Document