scholarly journals Retina-like Imaging and Its Applications: A Brief Review

2021 ◽  
Vol 11 (15) ◽  
pp. 7058
Author(s):  
Qun Hao ◽  
Yu Tao ◽  
Jie Cao ◽  
Mingyuan Tang ◽  
Yang Cheng ◽  
...  

The properties of the human eye retina, including space-variant resolution and gaze characters, provide many advantages for numerous applications that simultaneously require a large field of view, high resolution, and real-time performance. Therefore, retina-like mechanisms and sensors have received considerable attention in recent years. This paper provides a review of state-of-the-art retina-like imaging techniques and applications. First, we introduce the principle and implementing methods, including software and hardware, and describe the comparisons between them. Then, we present typical applications combined with retina-like imaging, including three-dimensional acquisition and reconstruction, target tracking, deep learning, and ghost imaging. Finally, the challenges and outlook are discussed to further study for practical use. The results are beneficial for better understanding retina-like imaging.

2014 ◽  
Vol 898 ◽  
pp. 614-617
Author(s):  
Rui Hong Li ◽  
Yue Ping Han

The present paper reviews the X-ray grating imaging systems at home and abroad from the aspects of technological characterizations and the newest researching focus. First, not only the imaging principles and the frameworks of the typical X-ray grating imaging system based on Talbot-Lau interferometry method, but also the algorithms of retrieving the signals of attenuation, refraction and small-angle scattering are introduced. Second, the system optimizing methods are discussed, which involves mainly the relaxing the requirement of high positioning resolution and strict circumstances for gratings and designing large field of view with high resolution. Third, two and four-dimensional grating-based X-ray imaging techniques are introduced.


2011 ◽  
Author(s):  
Meijing Gao ◽  
Weilong Wu ◽  
Haihua Gu ◽  
Weihong Bi

Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 418 ◽  
Author(s):  
Fanghua Zhang ◽  
Jie Cao ◽  
Qun Hao ◽  
Kaiyu Zhang ◽  
Yang Cheng ◽  
...  

Three-dimensional ghost imaging (3DGI) using a detector is widely used in many applications. The performance of 3DGI based on a uniform time slice is difficult to improve because obtaining an accurate time-slice position remains a challenge. This paper reports a novel structure based on non-uniform time slice combined with finite difference. In this approach, finite difference is beneficial to improving sensitivity of zero crossing to accurately obtain the position of the target in the field of view. Simultaneously, non-uniform time slice is used to quickly obtain 3DGI on an interesting target. Results show that better performances of 3DGI are obtained by our proposed method compared to the traditional method. Moreover, the relation between time slice and the signal-noise-ratio of 3DGI is discussed, and the optimal differential distance is obtained, thus motivating the development of a high-performance 3DGI.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Chong Wang ◽  
Zheng You ◽  
Fei Xing ◽  
Borui Zhao ◽  
Bin Li ◽  
...  

It has been discovered that image motions and optical flows usually become much more nonlinear and anisotropic in space-borne cameras with large field of view, especially when perturbations or jitters exist. The phenomenon arises from the fact that the attitude motion greatly affects the image of the three-dimensional planet. In this paper, utilizing the characteristics, an optical flow inversion method is proposed to treat high-accurate remote sensor attitude motion measurement. The principle of the new method is that angular velocities can be measured precisely by means of rebuilding some nonuniform optical flows. Firstly, to determine the relative displacements and deformations between the overlapped images captured by different detectors is the primary process of the method. A novel dense subpixel image registration approach is developed towards this goal. Based on that, optical flow can be rebuilt and high-accurate attitude measurements are successfully fulfilled. In the experiment, a remote sensor and its original photographs are investigated, and the results validate that the method is highly reliable and highly accurate in a broad frequency band.


1992 ◽  
Vol 8 (2) ◽  
pp. 145-151 ◽  
Author(s):  
Rosa M. Angulo ◽  
Jesús Dapena

This study compared the errors produced with 3-D video and film analysis techniques using the DLT method with fixed cameras when the images cover a wide field of view. The results indicated that with a large field of view (8 meters) the accuracy of video analysis is clearly inferior to that of film analysis. However, within the volume of the control object, both film and video analyses are still precise enough for most practical purposes. Errors were larger in landmarks outside the control object than in the points of the control object. The maximum errors in the calculated positions of external landmarks were particularly large in the video analysis. However, even these rather large errors for points markedly outside the control object may be acceptable. It will depend on the requirements of each particular investigation.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2842 ◽  
Author(s):  
Zhanpeng Xu ◽  
Erik Forsberg ◽  
Yang Guo ◽  
Fuhong Cai ◽  
Sailing He

A novel light-sheet microscopy (LSM) system that uses the laser triangulation method to quantitatively calculate and analyze the surface topography of opaque samples is discussed. A spatial resolution of at least 10 μm in z-direction, 10 μm in x-direction and 25 μm in y-direction with a large field-of-view (FOV) is achieved. A set of sample measurements that verify the system′s functionality in various applications are presented. The system has a simple mechanical structure, such that the spatial resolution is easily improved by replacement of the objective, and a linear calibration formula, which enables convenient system calibration. As implemented, the system has strong potential for, e.g., industrial sample line inspections, however, since the method utilizes reflected/scattered light, it also has the potential for three-dimensional analysis of translucent and layered structures.


2017 ◽  
Vol 56 (12) ◽  
pp. 3502 ◽  
Author(s):  
Yang Cheng ◽  
Jie Cao ◽  
Qun Hao ◽  
Fanghua Zhang ◽  
Shaopu Wang ◽  
...  

2017 ◽  
Vol 37 (2) ◽  
pp. 0215002
Author(s):  
简慧杰 Jian Huijie ◽  
何建争 He Jianzheng ◽  
王克逸 Wang Keyi

MRS Advances ◽  
2018 ◽  
Vol 3 (39) ◽  
pp. 2341-2346 ◽  
Author(s):  
Scott Annett ◽  
Sergio Morelhao ◽  
Darren Dale ◽  
Stefan Kycia

AbstractThree dimensional X-ray diffraction (3DXRD) microscopy is a powerful technique that provides crystallographic and spatial information of a large number, of the order of thousands, of crystalline grains in a sample simultaneously. A key component of every 3DXRD microscopy experiment is the near field detector that provides high resolution spatial information of the grains. In this work we present a novel design for a semi-transparent, 16 megapixel near field detector. As opposed to a typical single scintillator phosphor detector, this design, we call the Quad Near Field Detector, uses four quadrants. It has a total field of view is 5.3 mm x 5.3 mm with an effective pixel size of 1.3 µm x 1.3 µm. The detector’s relatively large field of view can be used to obtain higher order diffraction spots which we anticipate will lead to improved spatial resolution in grain reconstructions. The large field of view can also enable the detector to be positioned further from the sample, in this way increasing the working distance and enabling larger environmental cells for in-situ studies. Many alignment parameters can be resolved by careful mechanical design. For this reason a novel translation stage for focusing the microscopes was developed, tested, and implemented. The near field detector was calibrated and characterized at the Cornell High Energy Synchrotron Source. The operational feasibility of such a multi-plate detector demonstrated in this work paves the way for new technologies in instrumentation of 3DXRD microscopy.


Sign in / Sign up

Export Citation Format

Share Document