scholarly journals Vibration Damping Behavior of Composite Laminates Interleaved with PZT- and SMA-Particle-Dispersed Resin Mixture Films

2021 ◽  
Vol 11 (15) ◽  
pp. 7155
Author(s):  
Jae-Min Jung ◽  
Da-Som Lee ◽  
Sung-Ha Kim ◽  
Sung-Nam Moon ◽  
Woo-Il Lee ◽  
...  

In this study, functional particles such as piezoelectric (PZT) ceramic and shape memory alloy (SMA) particles have been incorporated in composite laminates to accelerate the loss of vibration energy. PZT ceramic particles and SMA particles are mixed with epoxy resin and rolled into a film shape before they are interleaved between prepreg plies for better distribution of the particles. Loss factor (tan δ) was measured with various particle loadings to verify the effectiveness of interleaving in the vibration damping of laminate specimens. It was observed that there existed an optimal content for maximizing the damping ability avoiding an aggregation of the particles. In addition, when PZT and SMA particles are applied simultaneously, PZT could enhance the vibration damping capability of SMA because PZT particles could generate thermal energy, and it would accelerate the phase change of the SMA particles. In this research, the effective way for enhancing the particle dispersion was suggested, and the particle loading could be controlled by finding an optimal content. Flexural moduli of the specimens were also measured, and they exhibited no change as the content of the particles increases. Therefore, dispersed particles used in this study increased the vibration damping capacity without reducing the mechanical properties.

2021 ◽  
Vol 1016 ◽  
pp. 315-324
Author(s):  
Feng Chen ◽  
Fu Kuan Liang ◽  
Wei Lin Ye ◽  
Yun Xiang Tong ◽  
Li Li

In the present study, the microstructure, martensitic transformation and damping characteristics of Fe-17Mn-xNb (x = 0, 0.5, 1, 2, 4 wt. %) alloys were investigated. Nb addition leads to the variation in both the volume fraction and the size of ε martensite, in addition, the formation of Fe2(Nb, Mn) precipitates. The martensitic transformation exhibits a tiny dependence on the content of Nb. The addition of Nb helps to enhance the damping capacity of Fe-17Mn. The maximum value of tan δ = 0.054 is achieved in Fe-17Mn-1Nb alloy, which is increased by 42% over Fe-17Mn. The damping mechanism caused by adding Nb is discussed in terms of the volume fraction and the size of ε martensite. Besides, the role of Fe2(Nb, Mn) is also taken into account.


1999 ◽  
Author(s):  
Ronald F. Gibson ◽  
Hui Zhao

Abstract It is shown that simultaneous improvement of vibration damping capacity and interlaminar fracture toughness in composite laminates can be achieved by using polymeric interleaves between the composite laminae. The specific case of Mode II interlaminar fracture toughness and flexural damping capacity of interleaved composite laminates is studied. Graphite/epoxy, E-glass/epoxy and E-glass/polyetherimide composite laminates with polymeric interleaves of several different thicknesses and materials were tested using both the end notch flexure (ENF) test for Mode II fracture toughness and the impulse-frequency response test for flexural damping capacity. The Mode II energy release rate GIIc for all three composites increased linearly with increasing interleaf thickness up to a critical thickness, then dropped off with further increases in thickness. The damping loss factor η for all three composites increased linearly with increasing interleaf thickness up to the maximum thickness. Analytical models for predicting the influence of interleaves on GIIc and η are developed, along with a hypothesis for the critical thickness effect with regard to fracture toughness.


2014 ◽  
Vol 81 (10) ◽  
Author(s):  
Filippo Casadei ◽  
Katia Bertoldi ◽  
David R. Clarke

This paper explores the vibration damping properties of thermal barrier coatings (TBCs) containing thin plastically deformable metallic layers embedded in an elastic ceramic matrix. We develop an elastic–plastic dynamical model to study how work hardening, yield strain, and elastic modulus of the metal affect the macroscopic damping behavior of the coating. Finite element (FE) simulations validate the model and are used to estimate the damping capacity under axial and flexural vibration conditions. The model also provides an explanation for the widely observed nonlinear variation of the loss factor with strain in plasma-spayed TBCs. Furthermore, it facilitates the identification of multilayer configurations that maximize energy dissipation.


2001 ◽  
Vol 123 (3) ◽  
pp. 309-314 ◽  
Author(s):  
Ronald F. Gibson ◽  
Yu Chen ◽  
Hui Zhao

It is shown that, under certain conditions, simultaneous improvement of vibration damping capacity and interlaminar fracture toughness in composite laminates can be achieved by using polymeric interleaves between the composite laminae. The specific case of Mode II interlaminar fracture toughness and flexural damping capacity of interleaved composite laminates is studied. Graphite/epoxy, E-glass/epoxy and E-glass/polyetherimide composite laminates with polymeric interleaves of several different thicknesses and materials were tested using both the end notch flexure (ENF) test for Mode II fracture toughness and the impulse-frequency response test for flexural damping capacity. The Mode II energy release rate GIIc for all three composites increased linearly with increasing interleaf thickness up to a critical thickness, then dropped off with further increases in thickness. The damping loss factor η for all three composites increased linearly with increasing interleaf thickness up to the maximum thickness. Analytical models for predicting the influence of interleaves on GIIc and η are developed, along with a hypothesis for the critical thickness effect with regard to fracture toughness.


2011 ◽  
Vol 66-68 ◽  
pp. 1155-1162
Author(s):  
Jian Ning Wei ◽  
Gen Mei Li ◽  
Li Ling Zhou ◽  
Xue Yun Zhou ◽  
Jian Min Yu ◽  
...  

A large number of macroscopic pores were introduced into commercially pure aluminum (Al) and Zn-Al eutectoid alloy by air pressure infiltration process to comparatively study the influence of macroscopic pores on the damping behaviors of the materials. Macroscopic pores size are on the order of a millimetre (0.5~1.4mm) and in large proportions, typically high 76vol.%. The damping behavior of the materials is characterized by internal friction (IF). The IF was measured on a multifunction internal friction apparatus (MFIFA) at frequencies of 0.5, 1.0 and 3.0 Hz over the temperature range of 25 to 400 °C, while continuously changing temperature. The damping capacity of the metal materials is shown to increase with introducing macroscopic pores. Finally, the operative damping mechanisms in the metal materials with macroscopic pores were discussed in light of IF measurements.


2016 ◽  
Vol 83 (5) ◽  
Author(s):  
Mahan Qwamizadeh ◽  
Pan Liu ◽  
Zuoqi Zhang ◽  
Kun Zhou ◽  
Yong Wei Zhang

One of the most crucial functionalities of load-bearing biological materials such as shell and bone is to protect their interior organs from damage and fracture arising from external dynamic impacts. However, how this class of materials effectively damp stress waves traveling through their structure is still largely unknown. With a self-similar hierarchical model, a theoretical approach was established to investigate the damping properties of load-bearing biological materials in relation to the biopolymer viscous characteristics, the loading frequency, the geometrical parameters of reinforcements, as well as the hierarchy number. It was found that the damping behavior originates from the viscous characteristics of the organic (biopolymer) constituents and is greatly tuned and enhanced by the staggered and hierarchical organization of the organic and inorganic constituents. For verification purpose, numerical experiments via finite-element method (FEM) have also been conducted and shown results consistent with the theoretical predictions. Furthermore, the results suggest that for the self-similar hierarchical design, there is an optimal aspect ratio of reinforcements for a specific loading frequency and a peak loading frequency for a specific aspect ratio of reinforcements, at which the damping capacity of the composite is maximized. Our findings not only add valuable insights into the stress wave damping mechanisms of load-bearing biological materials, but also provide useful guidelines for designing bioinspired synthetic composites for protective applications.


Sign in / Sign up

Export Citation Format

Share Document