scholarly journals MosAIc: A Classical Machine Learning Multi-Classifier Based Approach against Deep Learning Classifiers for Embedded Sound Classification

2021 ◽  
Vol 11 (18) ◽  
pp. 8394
Author(s):  
Lancelot Lhoest ◽  
Mimoun Lamrini ◽  
Jurgen Vandendriessche ◽  
Nick Wouters ◽  
Bruno da Silva ◽  
...  

Environmental Sound Recognition has become a relevant application for smart cities. Such an application, however, demands the use of trained machine learning classifiers in order to categorize a limited set of audio categories. Although classical machine learning solutions have been proposed in the past, most of the latest solutions that have been proposed toward automated and accurate sound classification are based on a deep learning approach. Deep learning models tend to be large, which can be problematic when considering that sound classifiers often have to be embedded in resource constrained devices. In this paper, a classical machine learning based classifier called MosAIc, and a lighter Convolutional Neural Network model for environmental sound recognition, are proposed to directly compete in terms of accuracy with the latest deep learning solutions. Both approaches are evaluated in an embedded system in order to identify the key parameters when placing such applications on constrained devices. The experimental results show that classical machine learning classifiers can be combined to achieve similar results to deep learning models, and even outperform them in accuracy. The cost, however, is a larger classification time.

Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2622
Author(s):  
Jurgen Vandendriessche ◽  
Nick Wouters ◽  
Bruno da Silva ◽  
Mimoun Lamrini ◽  
Mohamed Yassin Chkouri ◽  
...  

In recent years, Environmental Sound Recognition (ESR) has become a relevant capability for urban monitoring applications. The techniques for automated sound recognition often rely on machine learning approaches, which have increased in complexity in order to achieve higher accuracy. Nonetheless, such machine learning techniques often have to be deployed on resource and power-constrained embedded devices, which has become a challenge with the adoption of deep learning approaches based on Convolutional Neural Networks (CNNs). Field-Programmable Gate Arrays (FPGAs) are power efficient and highly suitable for computationally intensive algorithms like CNNs. By fully exploiting their parallel nature, they have the potential to accelerate the inference time as compared to other embedded devices. Similarly, dedicated architectures to accelerate Artificial Intelligence (AI) such as Tensor Processing Units (TPUs) promise to deliver high accuracy while achieving high performance. In this work, we evaluate existing tool flows to deploy CNN models on FPGAs as well as on TPU platforms. We propose and adjust several CNN-based sound classifiers to be embedded on such hardware accelerators. The results demonstrate the maturity of the existing tools and how FPGAs can be exploited to outperform TPUs.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 519
Author(s):  
Suleiman Y. Yerima ◽  
Mohammed K. Alzaylaee ◽  
Annette Shajan ◽  
Vinod P

Android is increasingly being targeted by malware since it has become the most popular mobile operating system worldwide. Evasive malware families, such as Chamois, designed to turn Android devices into bots that form part of a larger botnet are becoming prevalent. This calls for more effective methods for detection of Android botnets. Recently, deep learning has gained attention as a machine learning based approach to enhance Android botnet detection. However, studies that extensively investigate the efficacy of various deep learning models for Android botnet detection are currently lacking. Hence, in this paper we present a comparative study of deep learning techniques for Android botnet detection using 6802 Android applications consisting of 1929 botnet applications from the ISCX botnet dataset. We evaluate the performance of several deep learning techniques including: CNN, DNN, LSTM, GRU, CNN-LSTM, and CNN-GRU models using 342 static features derived from the applications. In our experiments, the deep learning models achieved state-of-the-art results based on the ISCX botnet dataset and also outperformed the classical machine learning classifiers.


10.2196/17478 ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. e17478 ◽  
Author(s):  
Shyam Visweswaran ◽  
Jason B Colditz ◽  
Patrick O’Halloran ◽  
Na-Rae Han ◽  
Sanya B Taneja ◽  
...  

Background Twitter presents a valuable and relevant social media platform to study the prevalence of information and sentiment on vaping that may be useful for public health surveillance. Machine learning classifiers that identify vaping-relevant tweets and characterize sentiments in them can underpin a Twitter-based vaping surveillance system. Compared with traditional machine learning classifiers that are reliant on annotations that are expensive to obtain, deep learning classifiers offer the advantage of requiring fewer annotated tweets by leveraging the large numbers of readily available unannotated tweets. Objective This study aims to derive and evaluate traditional and deep learning classifiers that can identify tweets relevant to vaping, tweets of a commercial nature, and tweets with provape sentiments. Methods We continuously collected tweets that matched vaping-related keywords over 2 months from August 2018 to October 2018. From this data set of tweets, a set of 4000 tweets was selected, and each tweet was manually annotated for relevance (vape relevant or not), commercial nature (commercial or not), and sentiment (provape or not). Using the annotated data, we derived traditional classifiers that included logistic regression, random forest, linear support vector machine, and multinomial naive Bayes. In addition, using the annotated data set and a larger unannotated data set of tweets, we derived deep learning classifiers that included a convolutional neural network (CNN), long short-term memory (LSTM) network, LSTM-CNN network, and bidirectional LSTM (BiLSTM) network. The unannotated tweet data were used to derive word vectors that deep learning classifiers can leverage to improve performance. Results LSTM-CNN performed the best with the highest area under the receiver operating characteristic curve (AUC) of 0.96 (95% CI 0.93-0.98) for relevance, all deep learning classifiers including LSTM-CNN performed better than the traditional classifiers with an AUC of 0.99 (95% CI 0.98-0.99) for distinguishing commercial from noncommercial tweets, and BiLSTM performed the best with an AUC of 0.83 (95% CI 0.78-0.89) for provape sentiment. Overall, LSTM-CNN performed the best across all 3 classification tasks. Conclusions We derived and evaluated traditional machine learning and deep learning classifiers to identify vaping-related relevant, commercial, and provape tweets. Overall, deep learning classifiers such as LSTM-CNN had superior performance and had the added advantage of requiring no preprocessing. The performance of these classifiers supports the development of a vaping surveillance system.


Author(s):  
Grayson R. Morgan ◽  
Cuizhen Wang ◽  
Zhenlong Li ◽  
Steven R. Schill ◽  
Daniel R. Morgan

Deep learning techniques are increasingly being recognized as effective image classifiers. Aside from their successful performance in past studies, the accuracies have varied in complex environments in comparison with the popularly applied machine learning classifiers. This study seeks to explore the feasibility for using a U-Net deep learning architecture to classify bi-temporal high resolution county scale aerial images to determine the spatial extent and changes of land cover classes that directly or indirectly impact tidal marsh. The image set used in the analysis is a collection of a 1-m resolution collection of National Agriculture Imagery Program (NAIP) tiles from 2009 and 2019 covering Beaufort County, South Carolina. The U-net CNN classification results were compared with two machine learning classifiers, the Random Trees (RT) and the Support Vector Machine (SVM). The results revealed a significant accuracy advantage in using the U-Net classifier (92.4%) as opposed to the SVM (81.6%) and RT (75.7%) classifiers for overall accuracy. From the perspective of a GIS analyst or coastal manager, the U-Net classifier is now an easily accessible nad powerful tool for mapping large areas. Change detection analysis indicated little areal change on marsh extent, though increased land development throughout the county has the potential to negatively impact the health of the marshes. Future work should explore applying the constructed U-Net classifier to coastal environments in large geographic areas, while also implementing other data sources (e.g., LIDAR, multispectral data) to enhance classification accuracy.


2019 ◽  
Author(s):  
Shyam Visweswaran ◽  
Jason B Colditz ◽  
Patrick O’Halloran ◽  
Na-Rae Han ◽  
Sanya B Taneja ◽  
...  

BACKGROUND Twitter presents a valuable and relevant social media platform to study the prevalence of information and sentiment on vaping that may be useful for public health surveillance. Machine learning classifiers that identify vaping-relevant tweets and characterize sentiments in them can underpin a Twitter-based vaping surveillance system. Compared with traditional machine learning classifiers that are reliant on annotations that are expensive to obtain, deep learning classifiers offer the advantage of requiring fewer annotated tweets by leveraging the large numbers of readily available unannotated tweets. OBJECTIVE This study aims to derive and evaluate traditional and deep learning classifiers that can identify tweets relevant to vaping, tweets of a commercial nature, and tweets with provape sentiments. METHODS We continuously collected tweets that matched vaping-related keywords over 2 months from August 2018 to October 2018. From this data set of tweets, a set of 4000 tweets was selected, and each tweet was manually annotated for relevance (vape relevant or not), commercial nature (commercial or not), and sentiment (provape or not). Using the annotated data, we derived traditional classifiers that included logistic regression, random forest, linear support vector machine, and multinomial naive Bayes. In addition, using the annotated data set and a larger unannotated data set of tweets, we derived deep learning classifiers that included a convolutional neural network (CNN), long short-term memory (LSTM) network, LSTM-CNN network, and bidirectional LSTM (BiLSTM) network. The unannotated tweet data were used to derive word vectors that deep learning classifiers can leverage to improve performance. RESULTS LSTM-CNN performed the best with the highest area under the receiver operating characteristic curve (AUC) of 0.96 (95% CI 0.93-0.98) for relevance, all deep learning classifiers including LSTM-CNN performed better than the traditional classifiers with an AUC of 0.99 (95% CI 0.98-0.99) for distinguishing commercial from noncommercial tweets, and BiLSTM performed the best with an AUC of 0.83 (95% CI 0.78-0.89) for provape sentiment. Overall, LSTM-CNN performed the best across all 3 classification tasks. CONCLUSIONS We derived and evaluated traditional machine learning and deep learning classifiers to identify vaping-related relevant, commercial, and provape tweets. Overall, deep learning classifiers such as LSTM-CNN had superior performance and had the added advantage of requiring no preprocessing. The performance of these classifiers supports the development of a vaping surveillance system.


Author(s):  
Janette Vazquez ◽  
Samir Abdelrahman ◽  
Loretta M. Byrne ◽  
Michael Russell ◽  
Paul Harris ◽  
...  

Abstract Introduction: Lack of participation in clinical trials (CTs) is a major barrier for the evaluation of new pharmaceuticals and devices. Here we report the results of the analysis of a dataset from ResearchMatch, an online clinical registry, using supervised machine learning approaches and a deep learning approach to discover characteristics of individuals more likely to show an interest in participating in CTs. Methods: We trained six supervised machine learning classifiers (Logistic Regression (LR), Decision Tree (DT), Gaussian Naïve Bayes (GNB), K-Nearest Neighbor Classifier (KNC), Adaboost Classifier (ABC) and a Random Forest Classifier (RFC)), as well as a deep learning method, Convolutional Neural Network (CNN), using a dataset of 841,377 instances and 20 features, including demographic data, geographic constraints, medical conditions and ResearchMatch visit history. Our outcome variable consisted of responses showing specific participant interest when presented with specific clinical trial opportunity invitations (‘yes’ or ‘no’). Furthermore, we created four subsets from this dataset based on top self-reported medical conditions and gender, which were separately analysed. Results: The deep learning model outperformed the machine learning classifiers, achieving an area under the curve (AUC) of 0.8105. Conclusions: The results show sufficient evidence that there are meaningful correlations amongst predictor variables and outcome variable in the datasets analysed using the supervised machine learning classifiers. These approaches show promise in identifying individuals who may be more likely to participate when offered an opportunity for a clinical trial.


Sign in / Sign up

Export Citation Format

Share Document