scholarly journals Customized Approach to Greenhouse Gas Emissions Calculations in Railway Freight Transport

2021 ◽  
Vol 11 (19) ◽  
pp. 9077
Author(s):  
Jan Chocholac ◽  
Roman Hruska ◽  
Stanislav Machalik ◽  
Dana Sommerauerova ◽  
Jiri Krupka

The topic of global warming is and will continue to be a crucial topic of this millennium. Freight transport, as a producer of greenhouse gas (hereinafter GHG) emissions, makes a significant contribution to the greenhouse effect. Large supply chains and large volumes of freight transport, which imply the production of significant volumes of GHG emissions, characterize the automotive industry (hereinafter AI). Thanks to these premises, it is necessary to seek and develop tools for reducing the volume of GHG emissions produced from the logistic activities of the AI, while maintaining the required level of logistic services. The assumptions for the calculation of GHG emissions from railway freight transport (hereinafter RFT) in the AI were identified through the use of semi-structured interviewing. Available railway freight GHG emission calculators were identified and analyzed from the perspective of suitability for the AI using a comparative content analysis. The main result of this manuscript is the proposal of a fully customized approach to GHG emission calculations in RFT for the AI. This approach was proposed, applied, and verified in the form of an interpretative case study. The use of this approach can be expected in support of logistic planning and decision making.

2018 ◽  
Vol 10 (9) ◽  
pp. 3145 ◽  
Author(s):  
Giuseppe Loprencipe ◽  
Laura Moretti ◽  
Tiziana Pestillo ◽  
Ricardo Ferraro

In Europe, the attention to efficiency and safety of international railway freight transport has grown in recent years and this has drawn attention to the importance of verifying the clearance between vehicle and lining, mostly when different and variable rolling stock types are expected. This work consists of defining an innovative methodology, with the objective of surveying the tunnel structures, verifying the clearance conditions, and designing a retrofitting work if necessary. The method provides for the use of laser scanner, thermocameras, and ground penetrating radar to survey the geometrical and structural conditions of the tunnel; an algorithm written by the authors permits to verify the clearances. Two different types of works are possible if the inner tunnel surfaces interfere with the profile of the rolling stock passing through: modification of the railroad track or modification of the tunnel intrados by mean milling of its lining. The presented case study demonstrates that the proposed methodology is useful for verifying compatibility between the design vehicle gauge and the existing tunnel intrados, and to investigate the chance to admit rolling stocks from different states. Consequently, the results give the railway management body a chance to perform appropriate measurements in those cases where the minimum clearance requirements are not achieved.


2018 ◽  
Vol 235 ◽  
pp. 00001
Author(s):  
Borna Abramović ◽  
Denis Šipuš ◽  
Martina Ribarić

Organisation is a significant segment of every enterprise, and so is the case with companies providing railway freight transport services. The success of a company depends on the organisational structure that makes it much easier to conduct business owing to the clearly defined hierarchy and responsibilities that lead to the ultimate goal – freight transport. This paper defines and describes railway freight transport, as well as the impact of freight transport market liberalisation on the sole organisation of a company. Moreover, various organisational schemes are analysed along with their potential benefits for the railway transport. The organisation of HŽ Cargo Ltd. is shown together with an outline of business activities of certain organisational units of the company.


2013 ◽  
Vol 10 (10) ◽  
pp. 16879-16902 ◽  
Author(s):  
Z. L. Cui ◽  
Y. L. Ye ◽  
W. Q. Ma ◽  
X. P. Chen ◽  
F. S. Zhang

Abstract. Although the concept of producing higher yields with reduced greenhouse gas (GHG) emissions is a goal that attracts increasing public and scientific attention, the tradeoff between crop productivity and GHG emissions in intensive agricultural production is not well understood. In this study, we investigated 33 sites of on-farm experiments to evaluate the tradeoff between grain yield and GHG emissions using two systems (conventional practice, CP; high-yielding systems, HY) of intensive irrigation wheat (Triticum aestivum L.) in China. Furthermore, we discussed the potential to produce higher yields with lower GHG emissions based on a survey of 2938 farmers. However, in both the HY and CP systems, wheat grain yield response to GHG emissions fit a linear-plateau model, whereas the curve for grain yield from the HY system was always higher than that from the CP system. Compared to the CP system, grain yield was 44% (2.6 Mg ha–1) higher in the HY system, while GHG emissions increased by only 2.5%, and GHG emission intensity was reduced by 29%. The current intensive irrigation wheat system with farmers' practice had a median yield and maximum GHG emission rate of 6.05 Mg ha–1 and 4783 kg CO2 eq ha–1, respectively; however, this system can be transformed to maintain yields while reducing GHG emissions by 40% (5.96 Mg ha–1, and 2890 kg CO2 eq ha–1). Further, the HY system was found to increase grain yield by 41% with a simultaneous reduction in GHG emissions by 38% (8.55 Mg ha–1, and 2961 kg CO2 eq ha–1, respectively). In the future, we suggest moving the tradeoff relationships and calculations from grain yield and GHG emissions, to new measures of productivity and environmental protection using innovative management technologies. This shift in focus is critical to achieve food and environmental security.


Author(s):  
Moneim Massar ◽  
Imran Reza ◽  
Syed Masiur Rahman ◽  
Sheikh Muhammad Habib Abdullah ◽  
Arshad Jamal ◽  
...  

The potential effects of autonomous vehicles (AVs) on greenhouse gas (GHG) emissions are uncertain, although numerous studies have been conducted to evaluate the impact. This paper aims to synthesize and review all the literature regarding the topic in a systematic manner to eliminate the bias and provide an overall insight, while incorporating some statistical analysis to provide an interval estimate of these studies. This paper addressed the effect of the positive and negative impacts reported in the literature in two categories of AVs: partial automation and full automation. The positive impacts represented in AVs’ possibility to reduce GHG emission can be attributed to some factors, including eco-driving, eco traffic signal, platooning, and less hunting for parking. The increase in vehicle mile travel (VMT) due to (i) modal shift to AVs by captive passengers, including elderly and disabled people and (ii) easier travel compared to other modes will contribute to raising the GHG emissions. The result shows that eco-driving and platooning have the most significant contribution to reducing GHG emissions by 35%. On the other side, easier travel and faster travel significantly contribute to the increase of GHG emissions by 41.24%. Study findings reveal that the positive emission changes may not be realized at a lower AV penetration rate, where the maximum emission reduction might take place within 60–80% of AV penetration into the network.


2014 ◽  
Vol 11 (8) ◽  
pp. 2287-2294 ◽  
Author(s):  
Z. L. Cui ◽  
L. Wu ◽  
Y. L. Ye ◽  
W. Q. Ma ◽  
X. P. Chen ◽  
...  

Abstract. Although the concept of producing higher yields with reduced greenhouse gas (GHG) emissions is a goal that attracts increasing public and scientific attention, the trade-off between high yields and GHG emissions in intensive agricultural production is not well understood. Here, we hypothesize that there exists a mechanistic relationship between wheat grain yield and GHG emission, and that could be transformed into better agronomic management. A total 33 sites of on-farm experiments were investigated to evaluate the relationship between grain yield and GHG emissions using two systems (conventional practice, CP; high-yielding systems, HY) of intensive winter wheat (Triticum aestivum L.) in China. Furthermore, we discussed the potential to produce higher yields with lower GHG emissions based on a survey of 2938 farmers. Compared to the CP system, grain yield was 39% (2352 kg ha−1) higher in the HY system, while GHG emissions increased by only 10%, and GHG emission intensity was reduced by 21%. The current intensive winter wheat system with farmers' practice had a median yield and maximum GHG emission rate of 6050 kg ha−1 and 4783 kg CO2 eq ha−1, respectively; however, this system can be transformed to maintain yields while reducing GHG emissions by 26% (6077 kg ha−1, and 3555 kg CO2 eq ha−1). Further, the HY system was found to increase grain yield by 39% with a simultaneous reduction in GHG emissions by 18% (8429 kg ha−1, and 3905 kg CO2 eq ha−1, respectively). In the future, we suggest moving the trade-off relationships and calculations from grain yield and GHG emissions to new measures of productivity and environmental protection using innovative management technologies.


Author(s):  
Rachel Shin ◽  
Cory Searcy

A growing number of companies in the brewery industry have made commitments to measure and reduce their greenhouse gas (GHG) emissions. However, many brewers, particularly craft brewers with relatively low rates of production, have struggled to meet these commitments. The purpose of this research was to investigate the challenges and benefits of measuring and reducing GHG emissions in the craft brewery industry. The research was conducted in Ontario, Canada, which has seen strong recent growth in the craft brewery industry. A case study and semi-structured interviews among Ontario Craft Brewers were conducted. The case study found that indirect (scope 3 emissions under the WBCSD & WRI GHG Protocol) GHG sources accounted for 46.4% of total GHGs, with major sources from barley agriculture, malted barley transportation, and bottle production. Direct emissions (scope 1) accounted for only 14.9% of GHGs, while scope 2 emissions, comprised mainly of energy consumption, accounted for 38.7% of GHGs. The case study and interviews found that the main challenges in calculating brewery GHGs are secondary data availability, technical knowledge, and finances. The study also found that the main benefits for Ontario breweries to measure their GHGs include sustainability marketing and preserving the environment. The interviews also found a poor understanding of carbon regulation among Ontario Craft Brewers, which is interesting considering that Ontario implemented a provincial cap and trade program in 2017.


Sign in / Sign up

Export Citation Format

Share Document