scholarly journals Numerical Investigation of Thermal-Flow Characteristics in Heat Exchanger with Various Tube Shapes

2021 ◽  
Vol 11 (20) ◽  
pp. 9477
Author(s):  
Fares Djeffal ◽  
Lyes Bordja ◽  
Redha Rebhi ◽  
Mustafa Inc ◽  
Hijaz Ahmad ◽  
...  

In this study, eight configurations of oval and flat tubes in annular finned-tube thermal devices are examined and compared with the conventional circular tube. The objective is to assess the effect of tube flatness and axis ratio of the oval tube on thermal-flow characteristics of a three-row staggered bank for Re (2600 ≤ Re ≤ 10,200). It has been observed that the thermal exchange rate and Colburn factor increase according to the axis ratio and the flatness, where O1 and F1 provide the highest values. O1 produces the lowest friction factor values of all the oval tubes at all Re, and F4 gives 13.2–18.5% less friction than the other tube forms. In terms of performance evaluation criterion, all of the tested tubes outperformed the conventional circular tube (O5), with O1 and F1 obtaining the highest values. The global performance criterion of O1 has been found to be 9.6–45.9% higher as compared to the other oval tube geometries at lower values of Re, and the global performance criterion increases with the increase in flatness. The F1 tube shape outperforms all the examined tube designs; thus, this tube geometry suggests that it be used in energy systems.

2019 ◽  
Vol 11 ◽  
pp. 175682931983368
Author(s):  
Chao Huo ◽  
Peng Lv ◽  
Anbang Sun

This paper aims to investigate the aerodynamics including the global performance and flow characteristics of a long-shrouded contra-rotating rotor by developing a full 3D RANS computation. Through validations by current experiments on the same shrouded contra-rotating rotor, the computation using sliding mesh method and the computational zone with an extended nozzle downstream flow field effectively works; the time-averaged solution of the unsteady computation reveals that more uniform flow presents after the downstream rotor, which implies that the rear rotor rotating at opposite direction greatly compensates and reduces the wake; the unsteady computations further explore the flow field throughout the whole system, along the span and around blade tips. Complex flow patterns including the vortices and their interactions are indicated around the blade roots and tips. For further identifying rotor configurations, the rotor–rotor distance and switching two rotor speeds were studied. The computation reveals that setting the second rotor backwards decreases the wake scale but increases its intensity in the downstream nozzle zone. However, for the effect of switching speeds, computations cannot precisely solve the flow when the rear rotor under the windmill because of the upstream rotor rotating much faster than the other one. All the phenomena from computations well implement the experimental observations.


2021 ◽  
pp. 10295-10338
Author(s):  
Yahya Yaser Shanyour AL-Salman, Ali Sabri Abbas

The thermal and flow performance of the circular annular finned tube heat exchanger with perforated fins were investigated numerically using ANSYS Fluent 2020 software, RNG k-e model with enhanced wall treatment, global performance criterion was introduced as evaluation factor of the heat exchanger performance, the parameters to be investigated were the number of holes, size of hole, tilt angle of the finned tube, fin height and spacing between fins. Agreement was found with literature that the tilt angle causes increase in heat transfer rate and increase in the pressure drop as well, but the change the global performance criterion as function to tilt angle depends on the fin heights, for higher fin heights the effective change of the pressure drop become greater than the increase in the heat transfer rate and the contrast occur in the cases of smaller fin heights, we have found that the perforation in tilted annular circular finned tubes causes an increase in the heat transfer rate and an enhancement in the total heat exchanger performance, increasing the number of holes will enhance the performance of the heat exchanger and the spacing increase reduces the heat exchanger performance.


2019 ◽  
Vol 27 (1) ◽  
pp. 1-9
Author(s):  
Lichen He ◽  
Weimin Yang ◽  
Changfeng Guan ◽  
Hua Yan ◽  
Lin Zheng ◽  
...  

Author(s):  
Patrick Magee ◽  
Mark Tooley

A fluid can be either a liquid or a gas. Fluids exhibit different flow behaviours depending on their physical properties, in particular viscosity and density. Flow characteristics also depend on the geometry of the pipes or channels through which they flow, and on the driving pressure regimes. These principles can be applied to any fluid, and the complexity of the analysis depends on the flow regimes described in this section [Massey 1970]. Fluid flow is generally described as laminar or turbulent. Laminar flow, demonstrated by Osborne Reynolds in 1867, is flow in which laminae or layers of fluid run parallel to each other. In a circular pipe, such as a blood vessel or a bronchus, velocity within the layers nearest the wall of the pipe is least; in the layer immediately adjacent to the wall it is probably actually zero. In fully developed laminar flow, the velocity profile across the pipe is parabolic, as shown in Figure 7.1, and as discussed in Chapter 1. Peak velocity of the fluid occurs in the mid line of the pipe, and is twice the average velocity across the pipe at equilibrium, and layers equidistant from the wall have equal velocity. The importance of laminar flow is that there is minimum energy loss in the flow, i.e. it is an efficient transport mode. This is in contrast to turbulent flow, where eddies and vortices (flow in directions other than the predominant one) mean that energy in fluid transport is wasted in production of heat, additional friction and noise. The result is that the pressure drop required to drive a given flow from one end of the pipe to the other is greater in turbulent than in laminar flow. The shear stress τ, which is the mechanical stress between layers of fluid and between the fluid and the tube wall, is proportional to the velocity gradient across the tube (dv/dr) of the fluid layers. The constant of proportionality between these two variables is the dynamic viscosity, η.


Author(s):  
Cristina Raluca Gh. Popescu

With the main objective of determining the essential factors that incorporate or enhance innovative capital, the present study, based, on the one hand, on the evaluation of the literature, allowed identifying ten potential factors and centered, on the other hand, on the analysis represented by the linear regression facilitated displaying the interdependencies between these factors and performance, thus determining the overall meaning and intensity of their contribution. In order to identify general and essential trends, to eliminate the cyclical influences of innovative capital, the present study was conducted on the basis of public and free access data contained by Eurostat, the transparency and accessibility of information being very important criteria in defining a simple and successful model, applicable for assessing the contribution of intellectual capital, in general, and its most dynamic component of innovative capital to increasing the performance of organizations.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5408
Author(s):  
Zuoqin Qian ◽  
Qiang Wang ◽  
Song Lv

Thermal hydraulic performance of the fin-and-tube heat exchanger is presented in this paper. The purpose of this investigation was to investigate the heat transfer mechanism and flow characteristics in the finned tube heat exchanger with streamline tube. The streamline tube in this paper had the streamline cross section which was composed of a semicircle and a half diamond. Three-dimensional numerical simulation was presented and validated by the experiment and the other numerical simulation from public articles. The present simulation had good agreement with the experimental results. The difference of the j factor and f factor between the experimental results and present simulation results by k-ε-enhance model was less than 7.6%. The geometrical parameters were considered as every single variable to investigate the thermal hydraulic performance. The results showed that smaller transversal and larger tube pitch provided greater compactness and better thermal performance. Moreover, a larger angle was not only beneficial to enhance the thermal performance, but also helpful to improve the overall performance. Secondly, the effects of angle on the heat transfer performance and fluid flow characteristics were investigated as the perimeter kept constant. It was shown that the overall performance of the streamline tube was better than the circular tube. Lastly, the entropy generation including frictional entropy generation and the thermal entropy generation were analyzed. It can be concluded that by using the streamline tube, the wake region can be obviously reduced, and thermal performance can be improved.


Sign in / Sign up

Export Citation Format

Share Document