scholarly journals Automatic Evaluation of Piano Performances for STEAM Education

2021 ◽  
Vol 11 (24) ◽  
pp. 11783
Author(s):  
Varinya Phanichraksaphong ◽  
Wei-Ho Tsai

Music plays an important part in the lives of people from an early age. Many parents invest in music education of various types for their children as arts and music are of economic importance. This leads to a new trend that the STEAM education system draws more and more attention from the STEM education system that has been developed over several years. For example, parents let their children listen to music since they were in the womb and invest their money in studying music at an early age, especially for playing and learning musical instruments. As far as education is concerned, assessment for music performances should be standardized, not based on the individual teacher’s standard. Thus, in this study, automatic assessment methods for piano performances were developed. Two types of piano articulation were taken into account, namely “Legato” with vibration notes using sustain pedals and “Staccato” with detached notes without the use of sustain pedals. For each type, piano sounds were analyzed and classified into “Good”, “Normal”, and “Bad” categories. The study investigated four approaches for this task: Support Vector Machine (SVM), Naive Bayes (NB), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM). The experiments were conducted using 4680 test samples, including isolated scale notes and kids’ songs, produced by 13 performers. The results show that the CNN approach is superior to the other approaches, with a classification accuracy of more than eighty percent.

2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


2020 ◽  
Vol 10 (3) ◽  
pp. 62
Author(s):  
Tittaya Mairittha ◽  
Nattaya Mairittha ◽  
Sozo Inoue

The integration of digital voice assistants in nursing residences is becoming increasingly important to facilitate nursing productivity with documentation. A key idea behind this system is training natural language understanding (NLU) modules that enable the machine to classify the purpose of the user utterance (intent) and extract pieces of valuable information present in the utterance (entity). One of the main obstacles when creating robust NLU is the lack of sufficient labeled data, which generally relies on human labeling. This process is cost-intensive and time-consuming, particularly in the high-level nursing care domain, which requires abstract knowledge. In this paper, we propose an automatic dialogue labeling framework of NLU tasks, specifically for nursing record systems. First, we apply data augmentation techniques to create a collection of variant sample utterances. The individual evaluation result strongly shows a stratification rate, with regard to both fluency and accuracy in utterances. We also investigate the possibility of applying deep generative models for our augmented dataset. The preliminary character-based model based on long short-term memory (LSTM) obtains an accuracy of 90% and generates various reasonable texts with BLEU scores of 0.76. Secondly, we introduce an idea for intent and entity labeling by using feature embeddings and semantic similarity-based clustering. We also empirically evaluate different embedding methods for learning good representations that are most suitable to use with our data and clustering tasks. Experimental results show that fastText embeddings produce strong performances both for intent labeling and on entity labeling, which achieves an accuracy level of 0.79 and 0.78 f1-scores and 0.67 and 0.61 silhouette scores, respectively.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 495
Author(s):  
Imayanmosha Wahlang ◽  
Arnab Kumar Maji ◽  
Goutam Saha ◽  
Prasun Chakrabarti ◽  
Michal Jasinski ◽  
...  

This article experiments with deep learning methodologies in echocardiogram (echo), a promising and vigorously researched technique in the preponderance field. This paper involves two different kinds of classification in the echo. Firstly, classification into normal (absence of abnormalities) or abnormal (presence of abnormalities) has been done, using 2D echo images, 3D Doppler images, and videographic images. Secondly, based on different types of regurgitation, namely, Mitral Regurgitation (MR), Aortic Regurgitation (AR), Tricuspid Regurgitation (TR), and a combination of the three types of regurgitation are classified using videographic echo images. Two deep-learning methodologies are used for these purposes, a Recurrent Neural Network (RNN) based methodology (Long Short Term Memory (LSTM)) and an Autoencoder based methodology (Variational AutoEncoder (VAE)). The use of videographic images distinguished this work from the existing work using SVM (Support Vector Machine) and also application of deep-learning methodologies is the first of many in this particular field. It was found that deep-learning methodologies perform better than SVM methodology in normal or abnormal classification. Overall, VAE performs better in 2D and 3D Doppler images (static images) while LSTM performs better in the case of videographic images.


2021 ◽  
pp. 016555152110065
Author(s):  
Rahma Alahmary ◽  
Hmood Al-Dossari

Sentiment analysis (SA) aims to extract users’ opinions automatically from their posts and comments. Almost all prior works have used machine learning algorithms. Recently, SA research has shown promising performance in using the deep learning approach. However, deep learning is greedy and requires large datasets to learn, so it takes more time for data annotation. In this research, we proposed a semiautomatic approach using Naïve Bayes (NB) to annotate a new dataset in order to reduce the human effort and time spent on the annotation process. We created a dataset for the purpose of training and testing the classifier by collecting Saudi dialect tweets. The dataset produced from the semiautomatic model was then used to train and test deep learning classifiers to perform Saudi dialect SA. The accuracy achieved by the NB classifier was 83%. The trained semiautomatic model was used to annotate the new dataset before it was fed into the deep learning classifiers. The three deep learning classifiers tested in this research were convolutional neural network (CNN), long short-term memory (LSTM) and bidirectional long short-term memory (Bi-LSTM). Support vector machine (SVM) was used as the baseline for comparison. Overall, the performance of the deep learning classifiers exceeded that of SVM. The results showed that CNN reported the highest performance. On one hand, the performance of Bi-LSTM was higher than that of LSTM and SVM, and, on the other hand, the performance of LSTM was higher than that of SVM. The proposed semiautomatic annotation approach is usable and promising to increase speed and save time and effort in the annotation process.


Author(s):  
Ralph Sherwin A. Corpuz ◽  

Analyzing natural language-based Customer Satisfaction (CS) is a tedious process. This issue is practically true if one is to manually categorize large datasets. Fortunately, the advent of supervised machine learning techniques has paved the way toward the design of efficient categorization systems used for CS. This paper presents the feasibility of designing a text categorization model using two popular and robust algorithms – the Support Vector Machine (SVM) and Long Short-Term Memory (LSTM) Neural Network, in order to automatically categorize complaints, suggestions, feedbacks, and commendations. The study found that, in terms of training accuracy, SVM has best rating of 98.63% while LSTM has best rating of 99.32%. Such results mean that both SVM and LSTM algorithms are at par with each other in terms of training accuracy, but SVM is significantly faster than LSTM by approximately 35.47s. The training performance results of both algorithms are attributed on the limitations of the dataset size, high-dimensionality of both English and Tagalog languages, and applicability of the feature engineering techniques used. Interestingly, based on the results of actual implementation, both algorithms are found to be 100% effective in accurately predicting the correct CS categories. Hence, the extent of preference between the two algorithms boils down on the available dataset and the skill in optimizing these algorithms through feature engineering techniques and in implementing them toward actual text categorization applications.


2020 ◽  
Vol 20 (3) ◽  
pp. 963-974 ◽  
Author(s):  
Zhe Xu ◽  
Zhihao Ying ◽  
Yuquan Li ◽  
Bishi He ◽  
Yun Chen

Abstract In this study, a deep learning model based on LSTM (Long Short-Term Memory) is used to predict the state of a water supply network due to its highly complex nonlinearity. The inputs of the model include state information on the pressures at measuring points, as well as control information on the water supply pressure and flow at each entry point. In order to enhance the performance of the model in feature extraction and identification and improve prediction accuracy, a parallel LSTM tandem DNN deep neural network model (PLDNN) is proposed. The experimental results indicate that the model has better learning performance and accuracy compared with traditional prediction methods (artificial neural networks, support vector machines, etc.) and general LSTM models.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Jun Zhang ◽  
Xiyao Cao ◽  
Jiemin Xie ◽  
Pangao Kou

Displacement plays a vital role in dam safety monitoring data, which adequately responds to security risks such as the flood water pressure, extreme temperature, structure deterioration, and bottom bedrock damage. To make accurate predictions, former researchers established various models. However, these models’ input variables cannot efficiently reflect the delays between the external environment and displacement. Therefore, a long short-term memory (LSTM) model is proposed to make full use of the historical data to reflect the delays. Furthermore, the LSTM model is improved to optimize the performance by making variables more physically reasonable. Finally, a real-world radial displacement dataset is used to compare the performance of LSTM models, multiple linear regression (MLR), multilayer perceptron (MLP) neural networks, support vector machine (SVM), and boosted regression tree (BRT). The results indicate that (1) the LSTM models can efficiently reflect the delays and make the variables selection more convenient and (2) the improved LSTM model achieves the best performance by optimizing the input form and network structure based on a clearer physical meaning.


Sign in / Sign up

Export Citation Format

Share Document