scholarly journals Applying Infinite Petri Nets to the Cybersecurity of Intelligent Networks, Grids and Clouds

2021 ◽  
Vol 11 (24) ◽  
pp. 11870
Author(s):  
Dmitry A. Zaitsev ◽  
Tatiana R. Shmeleva ◽  
David E. Probert

Correctness of networking protocols represents the principal requirement of cybersecurity. Correctness of protocols is established via the procedures of their verification. A classical communication system includes a pair of interacting systems. Recent developments of computing and communication grids for radio broadcasting, cellular networks, communication subsystems of supercomputers, specialized grids for numerical methods and networks on chips require verification of protocols for any number of devices. For analysis of computing and communication grid structures, a new class of infinite Petri nets has been introduced and studied for more than 10 years. Infinite Petri nets were also applied for simulating cellular automata. Rectangular, triangular and hexagonal grids on plane, hyper cube and hyper torus in multidimensional space have been considered. Composing and solving in parametric form infinite Diophantine systems of linear equations allowed us to prove the protocol properties for any grid size and any number of dimensions. Software generators of infinite Petri net models have been developed. Special classes of graphs, such as a graph of packet transmission directions and a graph of blockings, have been introduced and studied. Complex deadlocks have been revealed and classified. In the present paper, infinite Petri nets are divided into two following kinds: a single infinite construct and an infinite set of constructs of specified size (and number of dimensions). Finally, the paper discusses possible future work directions.

Author(s):  
Matthew Browne ◽  
Vijay Rawat ◽  
Catherine Tulloch ◽  
Cailem Murray-Boyle ◽  
Matthew Rockloff

Jurisdictions around the world have a self-declared mandate to reduce gambling-related harm. However, historically, this concept has suffered from poor conceptualisation and operationalisation. However, recent years have seen swift advances in measuring gambling harm, based on the principle of it being a quantifiable decrement to the health and wellbeing of the gambler and those connected to them. This review takes stock of the background and recent developments in harm assessment and summarises recent research that has validated and applied the Short Gambling Harms Screen and related instruments. We recommend that future work builds upon the considerable psychometric evidence accumulated for the feasibility of direct elicitation of harmful consequences. We also advocate for grounding harms measures with respect to scalar changes to public health utility metrics. Such an approach will avoid misleading pseudo-clinical categorisations, provide accurate population-level summaries of where the burden of harm is carried, and serve to integrate gambling research with the broader field of public health.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1375
Author(s):  
Soumya Sikdar ◽  
Pramod V. Menezes ◽  
Raven Maccione ◽  
Timo Jacob ◽  
Pradeep L. Menezes

Plasma electrolytic oxidation (PEO) is a novel surface treatment process to produce thick, dense metal oxide coatings, especially on light metals, primarily to improve their wear and corrosion resistance. The coating manufactured from the PEO process is relatively superior to normal anodic oxidation. It is widely employed in the fields of mechanical, petrochemical, and biomedical industries, to name a few. Several investigations have been carried out to study the coating performance developed through the PEO process in the past. This review attempts to summarize and explain some of the fundamental aspects of the PEO process, mechanism of coating formation, the processing conditions that impact the process, the main characteristics of the process, the microstructures evolved in the coating, the mechanical and tribological properties of the coating, and the influence of environmental conditions on the coating process. Recently, the PEO process has also been employed to produce nanocomposite coatings by incorporating nanoparticles in the electrolyte. This review also narrates some of the recent developments in the field of nanocomposite coatings with examples and their applications. Additionally, some of the applications of the PEO coatings have been demonstrated. Moreover, the significance of the PEO process, its current trends, and its scope of future work are highlighted.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1441
Author(s):  
Yangpeng Lu ◽  
Yanan Jia ◽  
Zihan Xue ◽  
Nannan Li ◽  
Junyu Liu ◽  
...  

Inonotus obliquus (Chaga mushroom) is a kind of medicine and health food widely used by folk in China, Russia, Korea, and some occidental countries. Among the extracts from Inonotus obliquus, Inonotus obliquus polysaccharide (IOPS) is supposed to be one of the major bioactive components in Inonotus obliquus, which possesses antitumor, antioxidant, anti-virus, hypoglycemic, and hypolipidemic activities. In this review, the current advancements on extraction, purification, structural characteristics, and biological activities of IOPS were summarized. This review can provide significant insight into the IOPS bioactivities as their in vitro and in vivo data were summarized, and some possible mechanisms were listed. Furthermore, applications of IOPS were reviewed and discussed; IOPS might be a potential candidate for the treatment of cancers and type 2 diabetes. Besides, new perspectives for the future work of IOPS were also proposed.


2009 ◽  
Vol 24 (S1) ◽  
pp. 1-1
Author(s):  
C. Kuehner

This contribution provides a systematic review on recent developments in psychological interventions for bipolar disorder. The main focus of research to date has investigated the role of different psychotherapeutic approaches (cognitive behavioural therapy, family focused therapy, interpersonal and social rhythm therapy, psychoeducation) as an adjunct to pharmacotherapy for remission and relapse prevention. The review will assess efficacy and effectiveness of these interventions, their common ingredients, limitations and predictors of outcome. It will further explore the potential role of psychological interventions for primary prevention of bipolar disorders in high risk children and adolescents. Suggestions will be made for future work in these areas.


Author(s):  
Dmitry A. Zaitsev

Functional Petri nets and subnets are introduced and studied for the purpose of speed-up of Petri nets analysis with algebraic methods. The authors show that any functional subnet may be generated by a composition of minimal functional subnets. They propose two ways to decompose a Petri net: via logical equations solution and with an ad-hoc algorithm, whose complexity is polynomial. Then properties of functional subnets are studied. The authors show that linear invariants of a Petri net may be computed from invariants of its functional subnets; similar results also hold for the fundamental equation of Petri nets. A technique for Petri nets analysis using composition of functional subnets is also introduced and studied. The authors show that composition-based calculation of invariants and solutions of fundamental equation provides a significant speed-up of computations. For an additional speed-up, they propose a sequential composition of functional subnets. Sequential composition is formalised in the terms of graph theory and was named the optimal collapse of a weighted graph. At last, the authors apply the introduced technique to the analysis of Petri net models of such well-known networking protocols as ECMA, TCP, BGP.


Author(s):  
Dmitriy Bespalov ◽  
Ali Shokoufandeh ◽  
William C. Regli ◽  
Wei Sun

In our recent work we have introduced a framework for extracting features from solid of mechanical artifacts in polyhedral representation based on scale-space feature decomposition [1]. Our approach used recent developments in efficient hierarchical decomposition of metric data using its spectral properties. In that work, through spectral decomposition, we were able to reduce the problem of matching to that of computing a mapping and distance measure between vertex-labeled rooted trees. This work discusses how Scale-Space decomposition frame-work could be extended to extract features from CAD models in polyhedral representation in terms of surface triangulation. First, we give an overview of the Scale-Space decomposition approach that is used to extract these features. Second, we discuss the performance of the technique used to extract features from CAD data in polyhedral representation. Third, we show the feature extraction process on noisy data — CAD models that were constructed using a 3D scanner. Finally, we conclude with discussion of future work.


This volume seeks to critically review the contemporary state of maritime historiography, as it stands at the volume’s publication date of 1995. The volume is comprised of thirteen essays, each focused on the recent research into the maritime concerns of a particular geographical location, listed as follows: Australia; Canada; China; Denmark; Germany; Greece; Ibero-America; India; the Netherlands; the Ottoman Empire; Spain; the United States; and a final chapter concerning historians and maritime labour in Britain, Australia, and New Zealand. One concern made evident by the collection is the lack of stable identity and cohesive aims within maritime history, the subject holds many conflicting definitions and concepts. The purpose of this volume is to explore the recent developments in maritime history, plus the growth of scholarly interest, to provide a ‘beacon and stimulus for future work’ and to clearly direct and define maritime historiography toward a solid position in the field of history.


2004 ◽  
Vol 52 (4) ◽  
pp. 481 ◽  
Author(s):  
David C. Shaw ◽  
David M. Watson ◽  
Robert L. Mathiasen

Whereas the biology, physiology and systematics of mistletoes have been explored in considerable detail, their ecology has received less attention and our understanding is highly fragmentary. A conspicuous exception is the dwarf mistletoes (Arceuthobium spp.)—a genus that exclusively parasitises coniferous trees, including many commercially valuable species in the forests of the western United States. Accordingly, these plants have been the subjects of intensive cross-disciplinary research for the past five decades, initially from a control and management perspective but extending into most aspects of their ecology and life history. This review summarises our understanding of dwarf mistletoes, focusing on recent developments in the areas of mistletoe–wildlife interactions, fire, ecosystem ecology and conservation biology. We also compare dwarf mistletoes with Australian mistletoes in the genus Amyema, a diverse suite of species found throughout the continent. Despite fundamental differences in their evolutionary origin and most aspects of their autecology and life history, the genera exhibit many similarities in terms of their ecological role in forests and woodlands, and their influence on stand- and forest-scale dynamics. In particular, both groups provide nesting resources for a range of birds and mammals, and nutritional resources for a diverse assemblage of species. Both also interact with fire, potentially leading to changes in successional dynamics at the stand scale. At an applied level, both groups are widely considered as pests but, as our understanding of these keystone species improves, they have the potential to serve as sensitive ecological indicators for their respective ecosystems. Key research priorities are identified for further research on both groups of mistletoes and more explicit comparative research, with Arceuthobium serving as a valuable template for future work on Amyema and Australian mistletoes in general.


2012 ◽  
Vol 13 (01n02) ◽  
pp. 1250001 ◽  
Author(s):  
MOHAMMAD H. AL-TOWAIQ ◽  
KHALED DAY

Network-on-chip multicore architectures with a large number of processing elements are becoming a reality with the recent developments in technology. In these modern systems the processing elements are interconnected with regular network-on-chip (NoC) topologies such as meshes and trees. In this paper we propose a parallel Gauss-Seidel (GS) iterative algorithm for solving large systems of linear equations on a torus NoC architecture. The proposed parallel algorithm is O (Nn2/k2) time complexity for solving a system with matrix of order n on a k × k torus NoC architecture with N iterations assuming n and N are large compared to k (i.e. for large linear systems that require a large number of iterations). We show that under these conditions the proposed parallel GS algorithm has near optimal speedup.


Policy Papers ◽  
2007 ◽  
Vol 2007 (44) ◽  
Author(s):  

This report reviews the work of the Fund since the 2007 Spring Meetings and the priorities for the period ahead. Progress has been made in the past few months with respect to the framework for surveillance and its implementation, quota and voice, and the Fund’s income model. Other key aspects of the MTS have also advanced, including with regard to Bank-Fund collaboration and the Fund’s role in low-income countries. Future work will focus on completion of the quota and voice reform, reaching agreement on the Fund’s new income model, and delivering budgetary restraint, as well as addressing the evolving challenges facing the Fund and the world economy, notably the financial market turbulence and financial globalization. The paper reports on recent developments in the global economy (Section II) and progress in the following key areas: reshaping surveillance (Section III); emerging market economies and crisis prevention (Section IV); the role of the Fund in low-income countries (Section V); quota and voice issues (Section VI), building institutions and capacity (Section VII); and managing an effective institution (Section VIII).


Sign in / Sign up

Export Citation Format

Share Document