scholarly journals Evaluation of the Effect of Food Products Containing Prebiotics and Bacillus subtilis HU58 on the Gut Microbial Community Activity and Community Composition Using an In Vitro M-SHIME® Model

2021 ◽  
Vol 11 (24) ◽  
pp. 11963
Author(s):  
Massimo Marzorati ◽  
Sarah Bubeck ◽  
Thomas Bayne ◽  
Kiran Krishnan ◽  
Aicacia Young

GoodBiome™ Foods is a collection of foods infused with prebiotics, including inulin and xylooligosaccharides, and the probiotic Bacillus subtilis HU58. The effects of repeated intake of three predigested GoodBiome™ Foods products and one comparator product on microbial community activity and composition were assessed using the mucosal simulator of the human intestinal microbial system (M-SHIME®) platform with proximal colon (PC) and distal colon (DC) compartments and conducted under healthy gut conditions. Treatment with all test products increased short-chain fatty acid (SCFA) production (acetate, propionate, and butyrate) versus the control period in both the PC and DC. The highest increases were seen with the GoodBiome™ Foods products. Ammonium and branched SCFA levels were also increased (versus the control period) in both compartments. Treatment with all test products enhanced the Simpson diversity index (versus the control period), reaching significance for all test products in the PC (p < 0.05). Treatment with all test products resulted in changes in the microbial community composition. The relative abundance increased for Proteobacteria and decreased for Actinobacteria in the PC and DC. Repeated intake of GoodBiome™ Food products increased SCFA production and microbial diversity in an M-SHIME® model of the human intestinal microbiome.

2018 ◽  
Vol 10 (8) ◽  
pp. 156
Author(s):  
Sofia Magalhaes Moreira ◽  
Claudia Braga Pereira Bento ◽  
Analice Claudia Azevedo ◽  
Hilario C. Mantovani

Antibiotics are used as feed additives for cattle to alter rumen fermentation and increase weight gain. However, this practice can potentially lead to the presence of antibiotic residues in milk and meat and the selection of multiresistant bacteria. Bacteriocins have been suggested as an alternative to antibiotics used in animal production. This work aimed to evaluate the in vitro effects of bovicin HC5 and virginiamycin on ruminal fermentation and on microbial community composition. Ruminal fluid was collected from fistulated cows fed corn silage and incubated with Trypticase (15 g L-1). Cultures treated with bovicin HC5 or virginiamycin decreased (P < 0.05) ammonia accumulation by 47.46% and 66.17%, respectively. Bovicin HC5 and virginiamycin also decreased (P < 0.05) the concentration of organic acids and gas production, but the effects were somewhat distinct. Molecular fingerprinting of the microbial community using PCR-DGGE revealed that community structure varied between treatments and were distinct from the controls. These results demonstrate that bovicin HC5 and virginiamycin have distinct effects on ruminal fermentation and modify differently the microbial community composition. These results also expand the knowledge about the effects of antibiotics and bacteriocins on bacterial and archaeal communities involved in protein metabolism in the rumen.


2003 ◽  
Vol 69 (2) ◽  
pp. 835-844 ◽  
Author(s):  
Wietse de Boer ◽  
Patrick Verheggen ◽  
Paulien J. A. Klein Gunnewiek ◽  
George A. Kowalchuk ◽  
Johannes A. van Veen

ABSTRACT Most soils inhibit fungal germination and growth to a certain extent, a phenomenon known as soil fungistasis. Previous observations have implicated microorganisms as the causal agents of fungistasis, with their action mediated either by available carbon limitation (nutrient deprivation hypothesis) or production of antifungal compounds (antibiosis hypothesis). To obtain evidence for either of these hypotheses, we measured soil respiration and microbial numbers (as indicators of nutrient stress) and bacterial community composition (as an indicator of potential differences in the composition of antifungal components) during the development of fungistasis. This was done for two fungistatic dune soils in which fungistasis was initially fully or partly relieved by partial sterilization treatment or nutrient addition. Fungistasis development was measured as restriction of the ability of the fungi Chaetomium globosum, Fusarium culmorum, Fusarium oxysporum, and Trichoderma harzianum to colonize soils. Fungistasis did not always reappear after soil treatments despite intense competition for carbon, suggesting that microbial community composition is important in the development of fungistasis. Both microbial community analysis and in vitro antagonism tests indicated that the presence of pseudomonads might be essential for the development of fungistasis. Overall, the results lend support to the antibiosis hypothesis.


PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0150115 ◽  
Author(s):  
Melanie B. Lengowski ◽  
Karin H. R. Zuber ◽  
Maren Witzig ◽  
Jens Möhring ◽  
Jeannette Boguhn ◽  
...  

2019 ◽  
Vol 7 (7) ◽  
pp. 202 ◽  
Author(s):  
Federica Mannelli ◽  
Matteo Daghio ◽  
Susana P. Alves ◽  
Rui J. B. Bessa ◽  
Sara Minieri ◽  
...  

The addition of polyphenol extracts in ruminant diets is an effective strategy to modulate rumen microflora. The aim of this in vitro trial was to study the effects of chestnut tannin extract (CHT), vescalagin (VES) and gallic acid (GAL) on dietary fibre degradability and on the dimethyl acetals (DMA) profile and microbial community composition of rumen liquor. Four diets (basal diet; basal diet plus CHT; basal diet plus VES; basal diet plus GAL) were fermented for 24 h using ewe rumen liquor. At the end of the fermentation, the microbial communities were characterized by sequencing the 16S rRNA gene. The DMA profile was analyzed by gas chromatography. Chestnut tannin extract did not affect fibre degradability, whereas VES and GAL showed a detrimental effect. The presence of CHT, VES and GAL influenced the concentration of several DMA (i.e., 12:0, 13:0, 14:0, 15:0, 18:0 and 18:1 trans-11), whereas the composition of the microbial community was marginally affected. The inclusion of CHT led to the enrichment of the genera Anaerovibrio, Bibersteinia, Escherichia/Shigella, Pseudobutyrivibrio and Streptococcus. The results of this study support the hypothesis that the activity of CHT is due to the synergistic effect of all components rather than the property of a single component.


2019 ◽  
Vol 98 (1) ◽  
Author(s):  
Cindy Duysburgh ◽  
Wendy P Ossieur ◽  
Kim De Paepe ◽  
Pieter Van den Abbeele ◽  
Ramiro Vichez-Vargas ◽  
...  

Abstract Whereas a wide variety of in vitro models have been developed and validated to assess the effect of specific food ingredients on the human gut microbiome, such models have only been developed and applied to a limited extent for companion animals. Since the use of pre- and probiotics to improve gut health is an emerging research topic in the field of companion animals and as dogs are often used as laboratory animals in developing and testing of pharmaceuticals, the current study aimed to establish an adequate canine in vitro model. This consisted of a four-stage reactor composed of a stomach and small intestinal compartment followed by a proximal and distal colon. This semi-continuous gastrointestinal tract model allowed a long-term, region-dependent, and pH-controlled simulation of the colon-associated microbial community of dogs. Upon reaching a functional steady state, the simulated canine microbial community composition proved to be representative of the in vivo situation. Indeed, the predominant bacterial phyla present in the in vitro proximal and distal colon corresponded with the main bacterial phyla detected in the fecal material of the dogs, resulting in an average community composition along the simulated canine gastrointestinal tract of 50.5% Firmicutes, 34.5% Bacteroidetes, 7.4% Fusobacteria, 4.9% Actinobacteria, and 2.7% Proteobacteria. A parallel in vivo–in vitro comparison assessing the effects of fructooligosaccharides (FOS) on the canine microbial community composition showed a consistent stimulation of Lactobacillus concentrations in the in vivo fecal samples as well as in the in vitro canine gut model. Furthermore, the in vitro platform provided additional insights about the prebiotic effect of FOS supplementation of dogs, such as a reduced abundance of Megamonas spp. which are only present in very low abundance in in vivo fecal samples, indicating an interesting application potential of the developed canine in vitro model in research related to gastrointestinal health of dogs.


Sign in / Sign up

Export Citation Format

Share Document