scholarly journals Is Cork Growth a Reliable Proxy for Stem Diameter Growth in Cork Oak (Quercus suber L.)? Implications for Forest Management under Climate Change in Mediterranean Regions

2021 ◽  
Vol 11 (24) ◽  
pp. 11998
Author(s):  
Augusta Costa ◽  
Paolo Cherubini

Cork-ring widths have been extensively used in dendroecological studies assessing the relationship between cork growth patterns and climate (precipitation and temperature). Generally, cork growth is assumed as a proxy for stem diameter growth to address cork oak (Quercus suber L.) growth sensitivity to climate and cork yield modeling. Cork growth represents a large part of stem radial increment in this species due to the enhanced activity of phellogen when compared to the cambium activity; thus, similar inter-annual variations of cork-ring widths and tree diameter growth might be expected. However, so far, the influence of rainfall and temperature on stem diameter growth has scarcely been addressed; moreover, it is still not clear whether tree size relates, and in what way, to the variations in radial growth of cork and stem diameter and whether these reflect (proportional) quantitative variations in stem basal area growth. In this study, we computed the annual growth of cork and of stem diameter at breast-height in data series of 47 trees, from 2000 to 2012, corresponding to a full cork production cycle. Results showed a tight link between cork-ring width and stem diameter growth indices. However, while cork growth strongly correlated with climate conditions in autumn–winter prior to the growing season, stem diameter growth correlated with climate conditions of the current growing season, and, more importantly, it was tree size-related. The extrapolation from cork-ring increments to stem basal area growth is likely to progressively underestimate tree growth and biomass increment in larger cork oaks and to further bias it due to climate change effects in the Mediterranean region.

2003 ◽  
Vol 79 (5) ◽  
pp. 898-905 ◽  
Author(s):  
Steve Bédard ◽  
Zoran Majcen

Eight experimental blocks were established in the southern part of Québec to determine the growth response of sugar maple (Acer saccharum) dominated stands after single tree selection cutting. Each block contained eight control plots (no cut) and eight cut plots. The intensity of removal varied between 21% and 32% and residual basal area was between 18.2 and 21 m2/ha. Ten year net annual basal area growth rates in cut plots (0.35 ± 0.04 m2/ha) were significantly higher (p = 0.0022) than in control plots (0.14 ± 0.06 m2/ha). The treatment particularly favoured diameter growth of stems between 10 and 30 cm in dbh, whose crowns were released by removing neighbouring trees. These results show that if the same net growth rate is maintained in the next decade most of the cut plots will reach their pre-cut basal area in about 20 years after cutting. Key words: northern hardwoods, selection cutting, uneven aged silviculture, basal area growth, diameter growth


1987 ◽  
Vol 17 (6) ◽  
pp. 534-538 ◽  
Author(s):  
Peter T. Sprinz ◽  
Harold E. Burkhart

Empirical and theoretical relationships between tree crown, stem, and stand characteristics for unthinned stands of planted loblolly pine (Pinustaeda L.) were investigated. Readily measured crown variables representing the amount of photosynthetic area or distance of the translocation process were identified. Various functions of these variables were defined and evaluated with regard to efficacy in predicting stem and stand attributes. Linear models were used to evaluate the contribution of the crown variables in predicting stem and stand characteristics. The stem attributes modeled included basal area, basal area growth, diameter at breast height, and diameter growth, while the stand attributes modeled were basal area, basal area growth, arithmetic mean diameter, and mean diameter growth. Crown diameter and crown projection area were particularly important in contributing to model fit and prediction of individual stem characteristics, while sum of crown projection areas was found especially important in stand level equations. As these crown measures developed over time so did corresponding stem and stand attributes.


2007 ◽  
Vol 37 (9) ◽  
pp. 1748-1754
Author(s):  
Xiaoping Zhang ◽  
Bo Zeng ◽  
Zhangcheng Zhong

In the Three Gorges reservoir region of China, Ficus microcarpa L. and Ficus virens Ait. var. sublanceolata (Miq.) Corner (Moraceae) are widely used in greening and ecological restoration following construction, including roads, railways, towns, etc. Branch cuttings are used for cultivating saplings of these trees. We conducted a 4 year experiment that included four branch-removal intensities to evaluate the influence of branch removal on stem height and diameter growth of these Ficus spp. It was found that branch removal did not affect the stem height growth of either F. microcarpa or F. virens, but decreased the growth of their stem basal diameters. The reduction in growth of stem basal diameter was intensified with branch removal. As expected, branch removal decreased the tapering of whole tree stems, but this effect was mainly due to the alteration of the shape of the bare stem part, and the shape of the stem part within the intact upper crown was not affected by the treatment. The data clearly showed that stem height growth was less sensitive than stem diameter growth to branch removal, and that the response of stem diameter growth to branch removal differed between bare and intact stem parts.


2021 ◽  
Vol 914 (1) ◽  
pp. 012015
Author(s):  
Mashudi ◽  
D Setiadi ◽  
S Pudjiono ◽  
M Susanto ◽  
L Baskorowati ◽  
...  

Abstract Alstonia angustiloba is a local tree species that have potential for community forest plantation; therefore, it is important to provide improved seeds. This study aimed to determine the diversity of growth, estimate the value of heritability, and the genetic correlation of the 4-years-old A. angustiloba progeny test. Randomized Completely Block Design with two factors (population and family) were used in this study. In this study, families are nested in the population. The population factors consisted of 4 levels, and family factors consisted of 43 families. The analysis of variance showed that height and stem diameter growth were significantly different between populations and families at four years old. The best height and stem diameter growth at the population level was obtained from the Pendopo population, 4.45 m and 7.71 cm, respectively. At the family level, the best height growth was obtained from 9 families (4.46-5.06 m), and the best stem diameter growth was obtained from 11 families (7.48-8.72 cm). The estimated individual heritability value for height was 0.41, and stem diameter was 0.23. Estimated family heritability values were 0.66 for height and 0.50 for stem diameter. The genetic correlation between height and stem diameter was 0.97.


1986 ◽  
Vol 3 (2) ◽  
pp. 73-75 ◽  
Author(s):  
Peter J. Cattelino ◽  
Charles A. Becker ◽  
Leslie G. Fuller

Abstract Dendrometer bands are common tools used when accurate measurement of tree-diameter growth or basal-area growth is desired. This common type of dendrometer consists of a metal band placed around the stem of the tree with reading scales scribed on the overlapping portions of the band. Homemade dendrometer bands can be made and installed efficiently and economically. Complete instructions together with a description of materials necessary for the construction and placement of dendrometer bands are presented. Evaluation of dendrometer bands in a field setting is also discussed. North. J. Appl. For. 3:73-75, June 1986.


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 494 ◽  
Author(s):  
Yanfang Wan ◽  
Pengtao Yu ◽  
Xiaoqing Li ◽  
Yanhui Wang ◽  
Bin Wang ◽  
...  

It is important to develop a better understanding of the climatic and soil factors controlling the stem diameter growth of Qinghai spruce (Picea crassifolia Kom.) forest. The results will provide basic information for the scientific prediction of trends in the future development of forests. To explain the seasonal pattern of stem diameter growth of Qinghai spruce and its response to environmental factors in the Qilian Mountains, northwest China, the stem diameter changes of 10 sample trees with different sizes and soil and meteorological conditions were observed from May to October of 2015 and 2016. Our results showed that the growth initiation of the stem diameter of Qinghai spruce was on approximately 25 May 2015 and 20 June 2016, and stem diameter growth commenced when the average air and soil temperatures were more than 10 °C and 3 °C, respectively. The cessation of growth occurred on approximately 21 August 2015 and 14 September 2016, and it was probably controlled by soil moisture. Stem diameter growth began earlier, ended later, and exhibited a larger growth rate as tree size increased. For the period May–October, the cumulative stem diameter growth of individual trees was 400 and 380 μm in 2015 and 2016, respectively. The cumulative stem diameter growth had a clear seasonal pattern, which could be divided into three growth stages, i.e., the beginning (from day of year (DOY) 120 to the timing of growth initiation with the daily growth rate of less than 2 μm·day−1), rapid growth (from the timing of growth initiation to the timing of growth cessation with the daily growth rate of more than 2 μm·day−1), and ending stages (from the timing of growth cessation to DOY 300 with the daily growth rate of less than 2 μm·day−1). The correlation of daily stem growth and environmental factors varied with growth stages; however, temperature, vapor pressure deficit (VPD), and soil moisture were the key factors controlling daily stem diameter growth. Overall, these results indicated that the seasonal variation in stem growth was regulated by soil and climatic triggers. Consequently, changes in climate seasonality may have considerable effects on the seasonal patterns of both stem growth and tree growth.


2018 ◽  
Vol 44 (2) ◽  
pp. 339-350 ◽  
Author(s):  
Ian J. Wright ◽  
Julia Cooke ◽  
Lucas A. Cernusak ◽  
Lindsay B. Hutley ◽  
Marina C. Scalon ◽  
...  

1994 ◽  
Vol 24 (9) ◽  
pp. 1877-1882 ◽  
Author(s):  
Patrick J. Temple ◽  
Paul R. Miller

Foliar injury symptoms and stem diameter growth were measured on well-watered and drought-stressed ponderosa pine (Pinusponderosa Dougl. ex Laws.) seedlings at the end of each of 3 years of exposure to three levels of ozone: charcoal-filtered air, nonfiltered air, and nonfiltered air plus 1.5 times ambient ozone. Ozone-injury indices were constructed by adding percent chlorotic mottle and percent necrosis for each needle age-class. Percent necrosis was weighted from 1 to 5 times to construct different indices. Seedlings grown in nonfiltered air plus 1.5 times ambient ozone developed severe foliar injury after 2 years of exposure and were the only seedlings with significant reductions in radial growth after three seasons of exposure to a mean seasonal ozone concentration of 88 ppb. Foliage that had developed >30% chlorotic mottle by September of the 2nd year had abscised by September of the following year. Reduction in radial growth was significantly correlated with amount of foliar injury in well-watered trees, and the best-fit regression equation occurred when percent necrosis was weighted by a factor of 4. Regressions between foliar-injury indices and radial growth in drought-stressed trees were not significant, nor were regressions between radial growth and foliar injury among well-watered trees with only 1 year of premature needle abscission. The low R2 (0.30) between foliar injury and radial growth in well-watered trees and the lack of a significant regression in drought-stressed trees suggest that detection of reductions in stem diameter growth of ponderosa pine in the field in response to ozone injury could be difficult, except for severely injured trees with fewer than 2 years of foliar retention.


Sign in / Sign up

Export Citation Format

Share Document