scholarly journals Study on the Variable Speed Diesel Generator and Effects on Structure Vibration Behavior in the DC Grid

2021 ◽  
Vol 11 (24) ◽  
pp. 12049
Author(s):  
Quang Dao Vuong ◽  
Jongsu Kim ◽  
Jae-Hyuk Choi ◽  
Jae-ung Lee ◽  
Ji-woong Lee ◽  
...  

Global warming and air pollutants are in general major worldwide concerns including for the marine shipping industry. Equipped with new technologies, the onboard DC grid has proven several advantages, including up to 27% reduction in specific fuel consumption with reduced emissions. That can be achieved by installing an optimized variable speed diesel generator. The engine speed is adjusted according to the required power, which allows to always keep the best efficiency of the combustion process. However, it also exposes some changes in the behavior of the structure vibrations. Measurements on an experimental variable speed diesel generator show that vibration increases when trying to slow down the engine for the same load. This behavior is closely related to the resonance in low rev range that usually occurs with general gensets. In other words, we can conclude that the DC grid’s variable speed generator may be beneficial for fuel efficiency, but not for mechanical life and safety. Several measures had been given, of which the alternation of the natural frequency is presented as an economical and efficient solution. The ultimate goal is to maintain operational safety while respecting reduced fuel consumption.

2014 ◽  
Author(s):  
M. Averbukh ◽  
A. Kuperman ◽  
G. Geula ◽  
S. Gadelovitch ◽  
V. Yuhimenko

Diesel generator based auxiliary power units (DG-APU) are widely used in different civil and military applications. Fuel economy and service life are probably the most important issues concerning their operation. Controlling engine throttle position in accordance with the load power allows regulating fuel supply to the engine to optimize fuel consumption. Despite the advantage of the method, control stability is sacrificed in case of light load operation as follows. When the DG-APU is running with a light load, engine throttle position should be nearly closed in order to minimize fuel consumption. If a load step is applied in such situation, engine velocity may drop sharply until complete stop because of insufficient control system bandwidth. This is why velocity and throttle position of a DG-APU should not be decreased below some level even if load power is low to maintain reliability at the expense of increased specific fuel consumption. Moreover, for small diesel-generators the throttle position is usually fixed. Thereby, relatively wide range load power variations (typical for many of diesel-generator applications) cause excessive fuel consumption. The situation may be sufficiently improved by connecting ultracapacitors (UC) on the DG-APU output terminals, introducing additional inertia allowing smoothing engine velocity decrease during a sudden load increase thus providing more time to the control system to regulate throttle position. As a result, DG-APU would be operated much more efficiently at light loads without sacrificing stability. Moreover, the UC may be used at as starter motor power source, removing starting stress from electrochemical batteries. Present work investigates the improvements in UC-supported DG-APU fuel efficiency and stability compared to conventional technical solutions. The research is based on mathematical modeling of the entire system, verified by experiments. The results support the presented ideas and quantitatively demonstrate the improved fuel economy and reliability of small DG-APUs.


2019 ◽  
Vol 9 (18) ◽  
pp. 3898 ◽  
Author(s):  
Jin Woong Lee ◽  
Su Chul Kim ◽  
Jooseon Oh ◽  
Woo-Jin Chung ◽  
Hyun-Woo Han ◽  
...  

This study was conducted to develop a load-sensitive engine speed control system to maximize the fuel efficiency of an agricultural tractor. The engine speed controller was developed through a model-based design approach using a tractor simulation model. The simulated engine speed and torque values were measured with an average error range of 1.4–4.9% compared to results obtained from field experiments. Using the tractor model, the gain parameters of the proportional–integral (PI) controller were optimized under the step, ramp, and actual load conditions. The simulation results using the actual load showed that the engine speed could be adjusted to within 2–3% of the desired value using the proposed engine speed controller. The throttle control system was constructed using four parts of a tractor engine, a microprocessor with an engine speed control algorithm, a throttle actuator, and a data acquisition system. Using the developed system, the operating engine speed values showed an average 1.17 % error compared to the desired engine speed. Three fuel efficiency parameters were used for evaluating the fuel-saving performance of the control system: specific volumetric fuel consumption (SVFC), fuel consumption per tilled area (FCA), and fuel consumption per work hour (FC). The values for SVFC, FCA, and FC obtained from the engine speed control system during plowing operations were 23.03–57.87%, 4.11–42.06%, and −7.24–38.48%, respectively, showing an improvement over the same operations without the control system.


2013 ◽  
Vol 341-342 ◽  
pp. 1275-1279
Author(s):  
Li Wang ◽  
Wei Yu Zhang ◽  
Yan Hong Du ◽  
Jin Feng Dong

A variable speed engine generator set for an isolated power system is investigated to reduce fuel consumption and emission than conventional fixed speed engine generator. An inverter incorporated with the variable speed gasoline engine generator set can improve dynamic characteristics under a sudden load change, and power quality, fuel consumption, and emission of pollutants can be improved remarkably. The superiority of a fuzzy neural network control to the engine speed and a digital PID controller to the inverter is verified by the experimental results.


2021 ◽  
pp. 45-51
Author(s):  
I.V. Parsadanov ◽  
A.G. Lal

Based on the analysis and synthesis of previously performed theoretical and practical studies, the paper proposes a concept of combustion process organization in a boxer two-stroke diesel engine at a high level of boosting. Such diesel engines are produced in Ukraine and are widely used in land, sea and rail transport, as diesel generator plants. The implementation of this concept will ensure the reduction of the thermal stress of the cylinder piston group for these diesel engines, while improving fuel efficiency. The features of the organization of the working process in a boxer two-stroke diesel engine are briefly considered. The contribution of Ukrainian, Russian and American scientists to the development and improvement of their mixing efficiency is noted. Following the purpose of the research, which determines the choice of directions for the development and implementation of technical solutions for the simultaneous reduction of fuel consumption and thermal tension of the cylinder-piston group when forcing a boxer two-stroke diesel engine, it is proposed to use the amount of released heat as a criterion for evaluating the quality of combustion. Based on the results of earlier studies, conceptual foundations for increasing the efficiency of the combustion process of a highly boosted boxer two-stroke diesel engine have been developed, which are directly related to the air supply, fuel supply, the rationale for choosing the shape of the combustion chamber are determined by the amount of heat released during combustion and the nature of its change in the crankshaft rotation angle.


1979 ◽  
Vol 101 (1) ◽  
pp. 64-69 ◽  
Author(s):  
R. J. Hosey ◽  
J. D. Powell

One of the important inputs to a spark ignition engine which affects nearly all engine outputs is spark advance. Spark advance not only affects fuel efficiency and exhaust emissions but is also a factor in the tendency for detonation or engine knock. Increasing pressure for reduction of emissions and better fuel economy is making effective spark advance control more important. The desire for improved efficiency is complicated by the increased use of low octane, lead-free gasoline which is an influence toward conservative, inefficient engine designs for reduction of engine knock. Conventional spark advance systems control on parameters which are inputs to the combustion process, such as manifold vacuum and engine speed. This paper describes a microprocessor based spark timing controller based on measurements of cylinder pressure history, a parameter which is a result of the combustion process. To feedback element is an experimental piezoelectric pressure transducer of an inexpensive design which would be suitable for mass production. Results are presented showing that this feedback controller is able to control spark advance to 1 percent of optimum even over fuel-air ratio changes of 40 percent. The controller also effectively controls engine knock to levels which are not harmful.


2014 ◽  
Vol 564 ◽  
pp. 8-12
Author(s):  
A. R. Najihah ◽  
A.A. Nuraini ◽  
Othman Inayatullah

A zero dimensional thermodynamic model simulation is developed to simulate the combustion characteristics and performance of a four stroke homogeneous compression combustion ignition (HCCI) engine fueled with gasoline. This model which applies the first law of thermodynamics for a closed system is inclusive of empirical model for predicting the important parameters for engine cycles: the combustion timing and mass burnt fraction during the combustion process. The hypothesis is the increasing intake temperature can reduce the combustion duration and the fuel consumption at wide range of equivalence ratio. The intake temperature were increased from 373-433 K with increment of 20 K. The engine was operated over a range of equivalence ratios of 0.2 to 0.5 at constant engine speed of 1200 rpm and intake pressure of 89,950 k Pa. Simulations were performed using Simulink® under different engine operating conditions. Increasing intake temperature allows reducing the combustion duration by 0.99 °CA and 0.26 °CA at equivalence ratios of 0.2 and 0.5, respectively. The brake specific fuel consumption decreases about 6.09%-5.76% at 0.2-0.5 of equivalence ratios. Thus, fuel consumption can be reduced by increasing intake temperature.


Author(s):  
Ruilin Liu ◽  
Zhongjie Zhang ◽  
Chunhao Yang ◽  
Yufei Jiao ◽  
Guangmeng Zhou ◽  
...  

Two-stage turbocharging technology is a solution to reduce turbo lag and improve the performance of engine and matching characteristics at high altitudes. In the present study, an engine testing system was established to study combustion performance and matching characteristics of a regulated two-stage turbocharging system (R2S) at different simulated altitudes. An equivalent turbocharger concept was put forward aiming to simplify the R2S with three bypass valves, and the total equivalent turbine flow area and equivalent efficiency of the R2S were obtained based on a theoretical study. Intake characteristics, combustion process, torque, power and fuel economy of the diesel engine matched with R2S were analyzed at different altitudes. The results showed that compared with 0 m, intake pressure, maximum combustion pressure, cumulative heat release, heat release rate decreased by 36.5%, 33.6%, 33.5%, 21.6%, −8.9% at 4000 r/min, and decreased by 12.3%, 2.9%, 16.4%, 8.8%, −5.4% at the speed of 2000 r/min at the altitude of 5000 m. The torque, fuel consumption and fuel consumption rate decreased by 10.1%, 5.1% and 5.4% at engine speed of 2000 r/min and by 35.7%, 27.6% and 8.9% at engine speed of 4000 r/min at 5000 m.


Author(s):  
N.S. Mustafa ◽  
N.H.A. Ngadiman ◽  
M.A. Abas ◽  
M.Y. Noordin

Fuel price crisis has caused people to demand a car that is having a low fuel consumption without compromising the engine performance. Designing a naturally aspirated engine which can enhance engine performance and fuel efficiency requires optimisation processes on air intake system components. Hence, this study intends to carry out the optimisation process on the air intake system and airbox geometry. The parameters that have high influence on the design of an airbox geometry was determined by using AVL Boost software which simulated the automobile engine. The optimisation of the parameters was done by using Design Expert which adopted the Box-Behnken analysis technique. The result that was obtained from the study are optimised diameter of inlet/snorkel, volume of airbox, diameter of throttle body and length of intake runner are 81.07 mm, 1.04 L, 44.63 mm and 425 mm, respectively. By using these parameters values, the maximum engine performance and minimum fuel consumption are 93.3732 Nm and 21.3695×10-4 kg/s, respectively. This study has fully accomplished its aim to determine the significant parameters that influenced the performance of airbox and optimised the parameters so that a high engine performance and fuel efficiency can be produced. The success of this study can contribute to a better design of an airbox.


Sign in / Sign up

Export Citation Format

Share Document