scholarly journals Magnetically Deployable Robots Using Layered Lamina Emergent Mechanism

2021 ◽  
Vol 12 (1) ◽  
pp. 14
Author(s):  
Tran Nguyen Lam Giang ◽  
Catherine Jiayi Cai ◽  
Godwin Ponraj ◽  
Hongliang Ren

The steady rise of deployable structures and mechanisms based on kirigami and origami principles has brought about design innovations that yield flexible and lightweight robots. These robots are designed based on desirable locomotion mechanisms and often incorporate additional materials to support their flexible structure to enable load-bearing applications and considerable efficient movement. One tetherless way to actuate these robots is via the use of magnets. This paper incorporates magnetic actuation and kirigami structures based on the lamina emergent mechanism (LEM). Three designs of magnetic-actuated LEMs (triangular prism, single LEM (SLEM), alternating mirror dual LEM (AMDLEM)) are proposed, and small permanent magnets are attached to the structures’ flaps or legs that rotate in response to an Actuating Permanent Magnet (APM) to yield stick-slip locomotion, enabling the robots to waddle and crawl on a frictional surface. For preliminary characterization, we actuate the three designs at a frequency of 0.6 Hz. We observed the triangular prism, SLEM, and AMDLEM prototypes to achieve horizontal speeds of 4.3 mm/s, 10.7 mm/s, and 12.5 mm/s on flat surfaces, respectively. We further explore how changing different parameters (actuation frequency, friction, leg length, stiffness, compressibility) affects the locomotion of the different mechanisms.

2017 ◽  
Vol 8 ◽  
pp. 1889-1896 ◽  
Author(s):  
Iakov A Lyashenko ◽  
Vadym N Borysiuk ◽  
Valentin L Popov

This article presents an investigation of the dynamical contact between two atomically flat surfaces separated by an ultrathin lubricant film. Using a thermodynamic approach we describe the second-order phase transition between two structural states of the lubricant which leads to the stick–slip mode of boundary friction. An analytical description and numerical simulation with radial distributions of the order parameter, stress and strain were performed to investigate the spatial inhomogeneity. It is shown that in the case when the driving device is connected to the upper part of the friction block through an elastic spring, the frequency of the melting/solidification phase transitions increases with time.


2000 ◽  
Vol 651 ◽  
Author(s):  
M. H. Müser

AbstractThe tribological properties of two smooth surfaces in the presence of a thin confined film are investigated with a generic model for the interaction between two surfaces and with computer sim- ulations. It is shown that at large normal contact pressures, an ultra thin film automatically leads to static friction between two flat surfaces - even if the surfaces are incommensurate. Commen- surability is nevertheless the key quantity to understand the tribological behavior of the contact. Qualitative differences between commensurate and incommensurate contacts remain even in the presence of a thin film. The differences mainly concern the thermal diffusion of the contact and the transition between smooth sliding and stick-slip.


2021 ◽  
Vol 7 ◽  
Author(s):  
Maja Srbulovic ◽  
Konstantinos Gkagkas ◽  
Carsten Gachot ◽  
András Vernes

Among the so-called analytical models of friction, the most popular and widely used one, the Prandtl-Tomlinson model in one and two dimensions is considered here to numerically describe the sliding of the tip within an atomic force microscope over a periodic and atomically flat surface. Because in these PT-models, the Newtonian equations of motion for the AFM-tip are Langevin-type coupled stochastic differential equations the resulting friction and reaction forces must be statistically correctly determined and interpreted. For this, it is firstly shown that the friction and reaction forces as averages of the time-resolved ones over the sliding part, are normally (Gaussian) distributed. Then based on this, an efficient numerical scheme is developed and implemented to accurately estimate the means and standard deviations of friction and reaction forces without performing too many repetitions for the same sliding experiments. The used corrugation potential is the simplest one obtained from the Fourier series expansion of the two-dimensional (2D) periodic potential, e.g., for an fcc(111) surface, which permits sliding on both commensurate and incommensurate paths. In this manner, it is proven that the PT-models predict both frictional regimes, namely the structural superlubricity and stick-slip along (in)commensurate sliding paths, if the ratio of mean corrugation and elastic energies is properly set.


2010 ◽  
Vol 09 (01) ◽  
pp. 19-35 ◽  
Author(s):  
ALEXEI V. KHOMENKO ◽  
IAKOV A. LYASHENKO ◽  
VADIM N. BORISYUK

Melting of an ultrathin lubricant film confined between two atomically flat surfaces is studied using the rheological model for viscoelastic matter approximation. Phase diagram with domains, corresponding to sliding, dry, and two types of stick-slip friction regimes has been built taking into account additive noises of stress, strain, and temperature of the lubricant. The stress time series have been obtained for all regimes of friction using the Stratonovich interpretation. It has been shown that self-similar regime of lubricant melting is observed when intensity of temperature noise is much larger than intensities of strain and stress noises. This regime is defined by homogenous distribution, at which characteristic stress scale is absent. We study stress time series obtained for all friction regimes using multifractal detrended fluctuation analysis. It has been shown that multifractality of these series is caused by different correlations that are present in the system and also by a power-law distribution. Since the power-law distribution is related to small stresses, this case corresponds to self-similar solid-like lubricant.


Author(s):  
B. S. Majumdar ◽  
D. A. Lavan ◽  
Bing Ye ◽  
S. V. Prasad

Contact, adhesion and stick-slip are major detrimental factors in the performance of micro electromechanical systems (MEMS). One method to reduce adhesion may be the incorporation of tailored rough surfaces, as suggested by the classical experiments of Fuller and Tabor some 3 decades ago. However, before embarking on a costly experimental approach, it is important to quantitatively assess the possible reduction in adhesion through such tailored surfaces. Past analysis has generally been confined to the adhesion of flat surfaces with a random roughness profile, or to Hertzian contact (without adhesion) of a cylindrical surface with a sinusoidal surface profile. In this work, we extend the analysis to the adhesion of cylindrical surfaces with any arbitrary roughness profile. The application may, for example, be in the contact of MEMS gears. The load-displacement and contact area profiles provide both qualitative and quantitative insight on how rough curved surfaces interact under adhesion conditions.


Author(s):  
Piotr R. Slawinski ◽  
Collin T. Garcia ◽  
Addisu Z. Taddese ◽  
Keith L. Obstein ◽  
Pietro Valdastri

Flexible endoscopy, a procedure during which an operator pushes a semi-rigid endoscope through a patient’s gastrointestinal tract, has been the gold-standard screening method for colon cancer screening (colonoscopy) for over 50 years. Owing to the large amounts of tissue stress that result from the need for transmitting a force to the tip of the endoscope while the device wraps through the bowel, implementing a front-actuated endoscopy system has been a popular area of research [1]. The pursuit of such a concept was accelerated by the advent of ingestible capsule endoscopes, which, since then, have been augmented by researchers to include therapeutic capabilities, modalities for maneuverability, amongst other diagnostic functions [2]. One of the more common approaches investigated has been the use of magnetic fields to apply forces and torques to steer the tip of an endoscope [3]. Recent efforts in magnetic actuation have resulted in the use of robot manipulators with permanent magnets at their end effectors that are used to manipulate endoscopes with embedded permanent magnets. Recently, we implemented closed loop control of a tethered magnetic capsule by using real-time magnetic localization and the linearization of a magnetic wrench applied to the capsule by the actuating magnet [4]. This control was implemented in 2 degrees-of-freedom (DoF) in position (in the horizontal plane) and 2 DoF in orientation (panning and tilting). One DoF in position is lost owing to the tethered capsule being actuated in air and thus lacking a restoring force to counter the high field gradient. The 3rd orientation DoF is lost owing to the axial symmetry of the permanent magnet in the capsule; this prevents the application of torque in the axial direction and thus controlled roll and introduces a singularity in the capsule’s actuation. Although another dipole could be used to eliminate this singularity, this would complicate both the actuation and localization methods. In this manuscript, we consider the consequences of the embedded magnet (EM) being radially offset from the center of the capsule while being manipulated by an external actuating magnet (AM). We have developed a tethered capsule endoscope that contains a cylindrical EM (11.11 mm in length and diameter) with a residual flux density of 1.48 T that is offset by 1.85 mm from the center of the capsule; a distance that is less than 10% of the capsule diameter. Our investigation into the topic results from repeated observation of the capsule’s preference to align such that the internal magnet is closest to the actuating magnet (AM). The AM is a cylindrical magnet (101.6 mm in length and diameter) with a residual flux density of 1.48 T that is mounted at the end effector of a 6 DoF manipulator, as seen in Figure 1. In this manuscript, we evaluate the torqueing effects of the presence of this magnet offset with the goal of determining whether the torque effect is negligible, or impacts capsule motion and thus can potentially be used for the benefit of endoscope manipulation. A concept schematic of this effect is shown in Figure 2. A discussion of how to use this torque is beyond the scope of this manuscript. To the authors’ knowledge, the use of such concept in permanent-magnet based control has not been investigated.


2020 ◽  
Vol 20 (3) ◽  
pp. 767-774
Author(s):  
IVONA CAMELIA PETRE ◽  
ELENA VALENTINA STOIAN ◽  
MARIA CRISTIANA ENESCU ◽  
VERONICA DESPA

The guides of the machine tools, brakes, clutches there is the possibility of the intermittent movement of stick-slip. This opens in the case of frictional couples with sliding motion, due to the low sliding speeds. Intermittent slip introduces vibrational phenomena and influences the uniformity of movement and the state of the surface of the couples due to their use. In this respect, the concerns related to the study of this phenomenon represent an interest in the machine building industry. The paper aims to achieve an original theoretical model for calculating the static and kinetic friction coefficients and its experimental verification on a stick-slip stand. The proposed theoretical model establishes the calculation relations of the static and kinetic friction coefficient and the connection between them taking into account the surface processing method. The originality of the approach is that the model is considered friction between the conical penetrator (steel material) and a polymer material. In the literature, the stick-slip phenomenon is approached only in terms of the analysis of flat surfaces. The torques of said materials is frequently used on the parts of sliding machines where this phenomenon is possible. The paper highlights the influence of exploitation factors (load, speed), the processing of surfaces, and the quality of the lubricating liquid on the stick-slip phenomenon, for a friction coupling of polymeric material / metallic material.


2020 ◽  
Vol 7 (1) ◽  
pp. A1-A7
Author(s):  
V. S. Maiboroda ◽  
O. O. Belajev ◽  
D. Yu. Dzhulii ◽  
I. V. Slobodianiuk

The results of the study of using the end-type heads based on permanent magnets for polishing flat surfaces of ferromagnetic parts on standard metal-working equipment are presented in the work. The possibility of a highly efficient achievement of the roughness of flat surfaces up to Ra < 0.05 μm with the initial Ra > 1–2 μm with removing of the heredity of the machining in the form of microwaves obtained in the face milling operation was shown. Based on the results of the analysis of the process of dispergation of the material was analyzed the influence of the magnetic field gradient the intensity of the magneto-abrasive machining of flat ferromagnetic surfaces by heads, which form a magneto-abrasive tool in the shape of a “brush” and “half of torus”. The influence of technological process parameters: the rotation speed of the working heads, the sizes of the working gap, the technological feed on the character of the change in the microgeometry of the machined surface were investigated. The machining conditions, under which occur the preferential machining of micro peaks or micro valleys on a rough surface, were identified. It was determined that the rational conditions of the magneto-abrasive machining of flat ferromagnetic surfaces are: the rotation speed of the working heads 900 rpm, the gap size between the machined surface and the working surface of the head 2.5–4.0 mm and the working feed 10–15 mm/min. Keywords: finishing, roughness, polishing, permanent magnet, magneto-abrasive tool.


2022 ◽  
Author(s):  
A.M. Ikonnikov

Abstract. The authors describe the method of calculating the magnetic forces in the working gap in the case of magnetically abrasive machining of flat surfaces of billets from magnetic materials by the periphery of a circular inductor on permanent magnets. The application of the software package ANSIS Maxwell for the calculation of the magnetic induction method in the working gap and the magnetic forces of the magnetically abrasive powder acting on the grain is shown. As a result of the work, the magnetic induction in the working gap was calculated for magnetically abrasive machining of flat surfaces of billets from magnetic materials by an inducer on permanent magnets. Also, calculations showed the distribution of the magnetic abrasive powder in the working gap, depending on the material of the workpiece being processed. In the case of magnetically abrasive machining of a magnetic workpiece, the powder in the working gap is concentrated in the zones with the greatest density of force lines - under the inductor poles. An analysis is made of the distribution of magnetic forces in the working gap during magnetic abrasive machining.


2003 ◽  
Vol 782 ◽  
Author(s):  
Micha Adler ◽  
John Ferrante ◽  
Alan Schilowitz ◽  
Dalia Yablon ◽  
Fredy Zypman

ABSTRACTWe present experimental results on dry friction, which are consistent with the hypothesis that the stick-slip mechanism for energy release is described by self-organized criticality. The data, obtained with an Atomic Force Microscope set to measure lateral forces– examines the variation of the friction force as a function of time – or sliding distance. The materials studied were nominally flat surfaces of mica, quartz, silica and steel. An analysis of the data shows that the probability distribution of slip sizes follows a power law. Our data strongly supports the existence of self-organized criticality for nano-stick-slip in dry sliding friction.


Sign in / Sign up

Export Citation Format

Share Document