scholarly journals Hydrodynamics of an Airlift Column for Aeration in Molten Sulfur

2021 ◽  
Vol 12 (1) ◽  
pp. 117
Author(s):  
Junjie Wang ◽  
Xiao Xu ◽  
Wei Wang ◽  
Yudong Li ◽  
Shihan Wu ◽  
...  

The airlift column is a promising technology for the removal of volatile gas from high-viscosity molten sulfur. However, a detailed analysis is lacking on the hydrodynamic properties inside the column, due to the difficulty in flow behavior detection in the opaque molten sulfur. In this work, we adopted the computational fluid dynamics simulation to understand the hydrodynamic behaviors in an airlift column for molten sulfur aeration. In addition, we analyzed the impacts of the superficial gas velocity (UGr) and column height on the hydrodynamic characteristics, such as gas holdup, average bubble diameter, and liquid circulation velocity (ULr) in the column. The simulation shows that at a constant column height of 15 m, an increase on gas holdup can be obtained with the increase of the superficial gas velocity, while the bubble diameter remains almost constant. Once the superficial gas velocity exceeded 0.333 m/s, the liquid circulation velocity increased slowly. With a variation on the column height from 5 to 25 m, a negligible change on gas holdup, but an obvious increase on liquid circulation velocity and bubble diameter is observed at the given superficial gas velocity of 0.0389 m/s. Furthermore, the simulation shows a similar trend, but with considerably more detailed information, on the relationship between the gas holdup and liquid circulation velocity when compared to the predictions from the Chisti correlation (1988) and an optimized correlation proposed in this work.

Author(s):  
Junjie Wang ◽  
Xiao Xu ◽  
Qiang Yang ◽  
Wei Wang ◽  
Yudong Li ◽  
...  

An industrial-scale internal loop airlift reactor is used to remove volatile gas from high-viscosity molten sulfur. The effects of the superficial gas velocity and reactor height on the hydrodynamic characteristics were studied. The gas holdup, average bubble diameter, and liquid circulation velocity in the reactor under different conditions were analyzed using computational fluid dynamics simulation. The superficial gas velocity was varied from 0.0056 m/s to 0.05 m/s at a constant reactor height of 15 m. The total reactor height was varied from 5 m to 25 m at a superficial gas velocity of 0.0389 m/s.Based on the correlation between the gas holdup and liquid circulation velocity proposed by Chisti (1988), an optimized correlation between the gas holdup and liquid circulation velocity was developed by considering the influence of the bubble diameter. The results obtained using the proposed correlation were compared with those obtained using the Chisti correlation and simulation.


Author(s):  
Chunxi Lu ◽  
Nana Qi ◽  
Kai Zhang ◽  
Jiaqi Jin ◽  
Hu Zhang

An external liquid circulation is introduced into a traditional internal loop reactor in order to improve liquid circulation and increase the interface between gas and liquid phases. The effects of superficial gas velocity and external liquid circulation velocity on local and overall gas holdups are explored experimentally and numerically in the loop section of a combined gas-liquid contactor, which consists of a liquid spray, sieve plates and an internal loop with external liquid circulation. Local gas holdup is measured experimentally by a double-sensor conductivity probe. Numerical simulations are conducted in the platform of a commercial software package, ANSYS CFX 10.0. Gas holdup and other information are obtained by solving the governing equations of mass and momentum balances for gas and liquid phases in a hybrid mesh system. Both measured and simulated results indicate that local, section-averaged, and overall gas holdups increase with an increase of the superficial gas velocity. The downcomer tube for circulating external liquid has a significant influence in the gas-distributor and the downcomer-tube action regions rather than in the upper draft-tube and the gas-liquid separation regions. Good agreement between measured and predicted data suggests that CFD simulation together with experimental investigation can be employed to develop novel gas-liquid contactors with a complex geometrical configuration.


2021 ◽  
Author(s):  
Zahra Zarei ◽  
Peyman Malekshahi ◽  
Mohammad Hossein Morowvat ◽  
Rahbar Rahimi ◽  
Seyyed Vahid Niknezhad

Abstract Global warming and rising air pollution which has been caused by using too much fossil fuel has led to look for a new clean source, sustainable and eco-friendly of energy like H2, which can be produced by cyanobacteria and microalgae. In this study, Anabaena sp. was used in a continuous operation to achieve biohydrogen production. To this end, an airlift photobioreactor (20 L) was considered. The effects of the gas holdup, liquid circulation velocity, and the amount of dissolved oxygen on hydrogen production were investigated. Gas holdup, liquid circulation velocity, and KLa (mass transfer coefficient) showed an upward trend by increasing the velocity of the inlet gas. Maximum biomass concentration of and maximal H2 production were observed 1.2 g L-1 d-1 and 371 mL h-1 PBR-1, respectively under light intensity of 3500 lux/m2 applying a light-dark cycle in 7 days, at Ad/Ar of 1.25 and 0.185 and 0.542 cm/s. pH, temperature (30+2 °C), light intensity, and inlet gas flow to the bioreactor (containing 98% air and 2% carbon dioxide) were remained steady. Using the airlift photobioreactor with a good mass transfer and light availability to cyanobacteria growth can be a cost-effective and environmentally technology for biological H2 production.


Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 594 ◽  
Author(s):  
Fangfang Tao ◽  
Shanglei Ning ◽  
Bo Zhang ◽  
Haibo Jin ◽  
Guangxiang He

The computational fluid dynamics-population balance model (CFD-PBM) has been presented and used to evaluate the bubble behavior in a large-scale high pressure bubble column with an inner diameter of 300 mm and a height of 6600 mm. In the heterogeneous flow regime, bubbles can be divided into “large bubbles” and “small bubbles” by a critical bubble diameter dc. In this study, large and small bubbles were classified according to different slopes in the experiment only by the method of dynamic gas disengagement, the critical bubble diameter was determined to be 7 mm by the experimental results and the simulation values. In addition, the effects of superficial gas velocity, operating pressure, surface tension and viscosity on gas holdup of large and small bubbles in gas–liquid two-phase flow were investigated using a CFD-PBM coupling model. The results show that the gas holdup of small and large bubbles increases rapidly with the increase of superficial gas velocity. With the increase of pressure, the gas holdup of small bubbles increases significantly, and the gas holdup of large bubbles increase slightly. Under the same superficial gas velocity, the gas holdup of large bubbles increases with the decrease of viscosity and the decrease of surface tension, but the gas holdup of small bubbles increases significantly. The simulated values of the coupled model have a good agreement with the experimental values, which can be applied to the parameter estimation of the high pressure bubble column system.


1988 ◽  
Vol 14 (5) ◽  
pp. 593-600 ◽  
Author(s):  
Masayuki Toda ◽  
Naoki Mogi ◽  
Shinobu Yoshikawa ◽  
Fumiko Sugano ◽  
Hirotaka Konno

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4329
Author(s):  
Radek Šulc ◽  
Jan Dymák

The gas–liquid hydrodynamics and mass transfer were studied in a concentric tube internal jet-loop airlift reactor with a conical bottom. Comparing with a standard design, the gas separator was equipped with an adjustable deflector placed above the riser. The effect of riser superficial gas velocity uSGR on the total gas holdup εGT, homogenization time tH, and overall volumetric liquid-phase mass transfer coefficient kLa was investigated in a laboratory bioreactor, of 300 mm in inner diameter, in a two-phase air–water system and three-phase air–water–PVC–particle system with the volumetric solid fraction of 1% for various deflector clearances. The airlift was operated in the range of riser superficial gas velocity from 0.011 to 0.045 m/s. For the gas–liquid system, when reducing the deflector clearance, the total gas holdup decreased, the homogenization time increased twice compared to the highest deflector clearance tested, and the overall volumetric mass transfer coefficient slightly increased by 10–17%. The presence of a solid phase shortened the homogenization time, especially for lower uSGR and deflector clearance, and reduced the mass transfer coefficient by 15–35%. Compared to the gas–liquid system, the noticeable effect of deflector clearance was found for the kLa coefficient, which was found approx. 20–29% higher for the lowest tested deflector clearance.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Shaobai Li ◽  
Siyuan Huang ◽  
Jungeng Fan

In this study, the gas holdup of bubble swarms in shear-thinning fluids was experimentally studied at superficial gas velocities ranging from 0.001 to 0.02 m·s−1. Carboxylmethyl cellulose (CMC) solutions of 0.2 wt%, 0.6 wt%, and 1.0 wt% with sodium dodecyl sulfate (SDS) as the surfactant were used as the power-law (liquid phase), and nitrogen was used as the gas phase. Effects of SDS concentration, rheological behavior, and physical properties of the liquid phase and superficial gas velocity on gas holdup were investigated. Results indicated that gas holdup increases with increasing superficial gas velocity and decreasing CMC concentration. Moreover, the addition of SDS in CMC solutions increased gas holdup, and the degree increased with the surfactant concentration. An empirical correlation was proposed for evaluating gas holdup as a function of liquid surface tension, density, effective viscosity, rheological property, superficial gas velocity, and geometric characteristics of bubble columns using the experimental data obtained for the different superficial gas velocities and CMC solution concentrations with different surfactant solutions. These proposed correlations reasonably fitted the experimental data obtained for gas holdup in this system.


Sign in / Sign up

Export Citation Format

Share Document