scholarly journals On-Board Flickering Pixel Dynamic Suppression Method Based on Multi-Feature Fusion

2021 ◽  
Vol 12 (1) ◽  
pp. 198
Author(s):  
Liangjie Jia ◽  
Peng Rao ◽  
Xin Chen ◽  
Shanchang Qiu

The blind pixel suppression is the key preprocess to guarantee the real-time space-based infrared point target (IRPT) detection and tracking. Meanwhile, flickering pixels, as one of the blind pixels, is hard to suppress because of randomness. At present, common methods adopting a single feature generally need to accumulate dozens or hundreds of frames to ensure detection accuracy, which cannot update flickering pixels frequently. However, with low detection frequency, the flickering pixels are easily miss detected. In this paper, we propose an on-board flickering pixel dynamic suppression method based on multi-feature fusion. The visual and motion features of flickering pixels are extracted from the result of IRPT detection and tracking. Then, the confidence of flickering pixel evaluation strategy and selection mechanism of flickering pixel are introduced to fuse the above features, which achieves accurate flickering pixel suppression using a dozen frames. The experimental results evaluated on the real image of four scenarios show that the blind pixel false detection rate of the proposed method is no more than 1.02%. Meanwhile, evaluated on the simulated image, the flickering pixel miss suppression rate is no more than 2.38%, and the flickering pixel false suppression rate is 0. The proposed method could be an addition to most other IRPT detection methods, which guarantees the near-real-time and reliability of on-board IRPT detection applications.

2014 ◽  
Vol 644-650 ◽  
pp. 1172-1175
Author(s):  
Ya Li Qi ◽  
Ye Li Li ◽  
Cui Wang ◽  
Li Kun Lu

Barcode detection has many applications and detection methods. Most applications have their own requirements for detection accuracy and speed. This paper has its requirement for speed in the real time system to detection inclination defect of barcode. It predominantly researches on two algorithms and their applications on 1-dimentional barcode scanning. One is location and the other is angle of inclination. The algorithms are particularly useful for real time detection of barcodes in online system with image vision devices.


Author(s):  
Zhenying Xu ◽  
Ziqian Wu ◽  
Wei Fan

Defect detection of electromagnetic luminescence (EL) cells is the core step in the production and preparation of solar cell modules to ensure conversion efficiency and long service life of batteries. However, due to the lack of feature extraction capability for small feature defects, the traditional single shot multibox detector (SSD) algorithm performs not well in EL defect detection with high accuracy. Consequently, an improved SSD algorithm with modification in feature fusion in the framework of deep learning is proposed to improve the recognition rate of EL multi-class defects. A dataset containing images with four different types of defects through rotation, denoising, and binarization is established for the EL. The proposed algorithm can greatly improve the detection accuracy of the small-scale defect with the idea of feature pyramid networks. An experimental study on the detection of the EL defects shows the effectiveness of the proposed algorithm. Moreover, a comparison study shows the proposed method outperforms other traditional detection methods, such as the SIFT, Faster R-CNN, and YOLOv3, in detecting the EL defect.


Author(s):  
Anan Banharnsakun ◽  
Supannee Tanathong

Purpose Developing algorithms for automated detection and tracking of multiple objects is one challenge in the field of object tracking. Especially in a traffic video monitoring system, vehicle detection is an essential and challenging task. In the previous studies, many vehicle detection methods have been presented. These proposed approaches mostly used either motion information or characteristic information to detect vehicles. Although these methods are effective in detecting vehicles, their detection accuracy still needs to be improved. Moreover, the headlights and windshields, which are used as the vehicle features for detection in these methods, are easily obscured in some traffic conditions. The paper aims to discuss these issues. Design/methodology/approach First, each frame will be captured from a video sequence and then the background subtraction is performed by using the Mixture-of-Gaussians background model. Next, the Shi-Tomasi corner detection method is employed to extract the feature points from objects of interest in each foreground scene and the hierarchical clustering approach is then applied to cluster and form them into feature blocks. These feature blocks will be used to track the moving objects frame by frame. Findings Using the proposed method, it is possible to detect the vehicles in both day-time and night-time scenarios with a 95 percent accuracy rate and can cope with irrelevant movement (waving trees), which has to be deemed as background. In addition, the proposed method is able to deal with different vehicle shapes such as cars, vans, and motorcycles. Originality/value This paper presents a hierarchical clustering of features approach for multiple vehicles tracking in traffic environments to improve the capability of detection and tracking in case that the vehicle features are obscured in some traffic conditions.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Hai Wang ◽  
Xinyu Lou ◽  
Yingfeng Cai ◽  
Yicheng Li ◽  
Long Chen

Vehicle detection is one of the most important environment perception tasks for autonomous vehicles. The traditional vision-based vehicle detection methods are not accurate enough especially for small and occluded targets, while the light detection and ranging- (lidar-) based methods are good in detecting obstacles but they are time-consuming and have a low classification rate for different target types. Focusing on these shortcomings to make the full use of the advantages of the depth information of lidar and the obstacle classification ability of vision, this work proposes a real-time vehicle detection algorithm which fuses vision and lidar point cloud information. Firstly, the obstacles are detected by the grid projection method using the lidar point cloud information. Then, the obstacles are mapped to the image to get several separated regions of interest (ROIs). After that, the ROIs are expanded based on the dynamic threshold and merged to generate the final ROI. Finally, a deep learning method named You Only Look Once (YOLO) is applied on the ROI to detect vehicles. The experimental results on the KITTI dataset demonstrate that the proposed algorithm has high detection accuracy and good real-time performance. Compared with the detection method based only on the YOLO deep learning, the mean average precision (mAP) is increased by 17%.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1692-1698
Author(s):  
Hui Zhang ◽  
Ting Lin Huang ◽  
Mei Hua Cao ◽  
Jin Lan Xu

Based on the improved weighted-least-square model and fuzzy similarity ratio method, a methodology is proposed to detect pipe bursts in real-time. When SCADA data is obtained DFP algorithm is used to get the real network state. Then the real values of burst characteristics are computed. And the hypothetical values assuming each pipe as the accident pipe are calculated for comparison. The fuzzy similarity ratio method is used to judge whether there is a pipe burst. If there is, the hypothetical value that is most similar to the real value is the accidental state and the corresponding assumed break is the burst location. According to the methodology a software system is developed with Delphi 7 for verification. The running results of a designed network show that the methodology is reliable and its detection accuracy is over 45%.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Dhanalakshmi Krishnan Sadhasivan ◽  
Kannapiran Balasubramanian

Provision of high security is one of the active research areas in the network applications. The failure in the centralized system based on the attacks provides less protection. Besides, the lack of update of new attacks arrival leads to the minimum accuracy of detection. The major focus of this paper is to improve the detection performance through the adaptive update of attacking information to the database. We propose an Adaptive Rule-Based Multiagent Intrusion Detection System (ARMA-IDS) to detect the anomalies in the real-time datasets such as KDD and SCADA. Besides, the feedback loop provides the necessary update of attacks in the database that leads to the improvement in the detection accuracy. The combination of the rules and responsibilities for multiagents effectively detects the anomaly behavior, misuse of response, or relay reports of gas/water pipeline data in KDD and SCADA, respectively. The comparative analysis of the proposed ARMA-IDS with the various existing path mining methods, namely, random forest, JRip, a combination of AdaBoost/JRip, and common path mining on the SCADA dataset conveys that the effectiveness of the proposed ARMA-IDS in the real-time fault monitoring. Moreover, the proposed ARMA-IDS offers the higher detection rate in the SCADA and KDD cup 1999 datasets.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Haibin Shi ◽  
Guang Cheng ◽  
Ying Hu ◽  
Fuzhou Wang ◽  
Haoxuan Ding

With the great changes in network scale and network topology, the difficulty of DDoS attack detection increases significantly. Most of the methods proposed in the past rarely considered the real-time, adaptive ability, and other practical issues in the real-world network attack detection environment. In this paper, we proposed a real-time adaptive DDoS attack detection method RT-SAD, based on the response to the external network when attacked. We designed a feature extraction method based on sketch and an adaptive updating algorithm, which makes the method suitable for the high-speed network environment. Experiment results show that our method can detect DDoS attacks using sampled Netflowunder high-speed network environment, with good real-time performance, low resource consumption, and high detection accuracy.


2021 ◽  
Author(s):  
Zhenyu Wang ◽  
Senrong Ji ◽  
Duokun Yin

Abstract Recently, using image sensing devices to analyze air quality has attracted much attention of researchers. To keep real-time factory smoke under universal social supervision, this paper proposes a mobile-platform-running efficient smoke detection algorithm based on image analysis techniques. Since most smoke images in real scenes have challenging variances, it’s difficult for existing object detection methods. To this end, we introduce the two-stage smoke detection (TSSD) algorithm based on the lightweight framework, in which the prior knowledge and contextual information are modeled into the relation-guided module to reduce the smoke search space, which can therefore significantly improve the shortcomings of the single-stage method. Experimental results show that the TSSD algorithm can robustly improve the detection accuracy of the single-stage method and has good compatibility for different image resolution inputs. Compared with various state-of-the-art detection methods, the accuracy AP mean of the TSSD model reaches 59.24%, even surpassing the current detection model Faster R-CNN. In addition, the detection speed of our proposed model can reach 50 ms (20 FPS), which meets the real-time requirements, and can be deployed in the mobile terminal carrier. This model can be widely used in some scenes with smoke detection requirements, providing great potential for practical environmental applications.


2019 ◽  
Vol 11 (7) ◽  
pp. 786 ◽  
Author(s):  
Yang-Lang Chang ◽  
Amare Anagaw ◽  
Lena Chang ◽  
Yi Wang ◽  
Chih-Yu Hsiao ◽  
...  

Synthetic aperture radar (SAR) imagery has been used as a promising data source for monitoring maritime activities, and its application for oil and ship detection has been the focus of many previous research studies. Many object detection methods ranging from traditional to deep learning approaches have been proposed. However, majority of them are computationally intensive and have accuracy problems. The huge volume of the remote sensing data also brings a challenge for real time object detection. To mitigate this problem a high performance computing (HPC) method has been proposed to accelerate SAR imagery analysis, utilizing the GPU based computing methods. In this paper, we propose an enhanced GPU based deep learning method to detect ship from the SAR images. The You Only Look Once version 2 (YOLOv2) deep learning framework is proposed to model the architecture and training the model. YOLOv2 is a state-of-the-art real-time object detection system, which outperforms Faster Region-Based Convolutional Network (Faster R-CNN) and Single Shot Multibox Detector (SSD) methods. Additionally, in order to reduce computational time with relatively competitive detection accuracy, we develop a new architecture with less number of layers called YOLOv2-reduced. In the experiment, we use two types of datasets: A SAR ship detection dataset (SSDD) dataset and a Diversified SAR Ship Detection Dataset (DSSDD). These two datasets were used for training and testing purposes. YOLOv2 test results showed an increase in accuracy of ship detection as well as a noticeable reduction in computational time compared to Faster R-CNN. From the experimental results, the proposed YOLOv2 architecture achieves an accuracy of 90.05% and 89.13% on the SSDD and DSSDD datasets respectively. The proposed YOLOv2-reduced architecture has a similarly competent detection performance as YOLOv2, but with less computational time on a NVIDIA TITAN X GPU. The experimental results shows that the deep learning can make a big leap forward in improving the performance of SAR image ship detection.


Author(s):  
Neha B. ◽  
Naveen V. ◽  
Angelin Gladston

With human-computer interaction technology evolving, direct use of the hand as an input device is of wide attraction. Recently, object detection methods using CNN models have significantly improved the accuracy of hand detection. This paper focuses on creating a hand-controlled web-based skyfall game by building a real time hand detection using CNN-based technique. A CNN network, which uses a MobileNet as the feature extractor along with the single shot detector framework, is used to achieve a robust and fast detection of hand location and tracking. Along with detection and tracking of hand, skyfall game has been designed to play using hand in real time with tensor flow framework. This way of designing the game where hand is used as input to control the paddle of skyfall game improved the player interaction and interest towards playing the game. This model of CNN network used egohands dataset for detecting and tracking the hands in real time and produced an average accuracy of 0.9 for open hands and 0.6 for closed hands which in turn improved player and game interactions.


Sign in / Sign up

Export Citation Format

Share Document