scholarly journals Use of Digestate as Organic Amendment and Source of Nitrogen to Vegetable Crops

2021 ◽  
Vol 12 (1) ◽  
pp. 248
Author(s):  
Carmo Horta ◽  
João Paulo Carneiro

Anaerobic digestion is a valuable process to use livestock effluents to produce green energy and a by-product called digestate with fertilising value. This work aimed at evaluating the fertilising value of the solid fraction (SF) of a digestate as an organic amendment and as a source of nitrogen to crops replacing mineral N. A field experiment was done with two consecutive vegetable crops. The treatments were: a control without fertilisation; Ni85 mineral fertilisation with 85 kg ha−1 of mineral N; fertiliser with digestate at an increasing nitrogen application rate (kg N ha−1): DG-N85 DG-N170, DG-N170+85, DG-N170+170; fertilisation with digestate together with Ni: DG-N85+Ni60, DG-N170+Ni60, DG-N170+Ni25. The results showed a soil organic amendment effect of the SF with a beneficial effect on SOM, soil pH and exchangeable bases. The SF was able to replace part of the mineral N fertilisation. The low mineralisation of the stable organic matter together with some immobilisation of mineral N from SF caused low N availability. The fertilisation planning should consider the SF ratio between the organic N (NO) and total N (TKN). Low NO:TKN ratios (≈0.65) needed lower Ni addition to maintaining the biomass production similar to the mineral fertilisation.

Author(s):  
Subin Kalu ◽  
Gboyega Nathaniel Oyekoya ◽  
Per Ambus ◽  
Priit Tammeorg ◽  
Asko Simojoki ◽  
...  

AbstractA 15N tracing pot experiment was conducted using two types of wood-based biochars: a regular biochar and a Kon-Tiki-produced nutrient-enriched biochar, at two application rates (1% and 5% (w/w)), in addition to a fertilizer only and a control treatment. Ryegrass was sown in pots, all of which except controls received 15N-labelled fertilizer as either 15NH4NO3 or NH415NO3. We quantified the effect of biochar application on soil N2O emissions, as well as the fate of fertilizer-derived ammonium (NH4+) and nitrate (NO3−) in terms of their leaching from the soil, uptake into plant biomass, and recovery in the soil. We found that application of biochars reduced soil mineral N leaching and N2O emissions. Similarly, the higher biochar application rate of 5% significantly increased aboveground ryegrass biomass yield. However, no differences in N2O emissions and ryegrass biomass yields were observed between regular and nutrient-enriched biochar treatments, although mineral N leaching tended to be lower in the nutrient-enriched biochar treatment than in the regular biochar treatment. The 15N analysis revealed that biochar application increased the plant uptake of added nitrate, but reduced the plant uptake of added ammonium compared to the fertilizer only treatment. Thus, the uptake of total N derived from added NH4NO3 fertilizer was not affected by the biochar addition, and cannot explain the increase in plant biomass in biochar treatments. Instead, the increased plant biomass at the higher biochar application rate was attributed to the enhanced uptake of N derived from soil. This suggests that the interactions between biochar and native soil organic N may be important determinants of the availability of soil N to plant growth.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 764
Author(s):  
Sharon L. Weyers ◽  
David W. Archer ◽  
Jane M.F. Johnson ◽  
Alan R. Wilts

Application of exogenous N fertilizers provides agronomic benefits but carries environmental liabilities. Managing benefits and liabilities of N-based fertilizers in conventional (CNV) and organic (ORG) cropping systems might be improved with better knowledge of nutrient dynamics, the generation of intrinsic N, and maintenance of soil organic matter. This study evaluated mineral N dynamics, yields, residue inputs, and change in soil organic C (SOC) and total N (TN) in strip-tilled, four-year crop rotations [corn (Zea mays L.)-soybean (Glycine max [L.] Merr.)-wheat under-seeded with alfalfa (Triticum aestivum L./Medicago sativa L.)-alfalfa] over eight years of production under CNV management using mineral-N (NO3NH4) and chemical pesticides or ORG management using organic-N (animal manure) and no chemical treatments. In ORG, N availability increased over time, but did not benefit ORG yields due to poor control of insects and weeds. Corn, soybean, and wheat grain yields were 1.9 to 2.7 times greater in CNV. In general, SOC was lost in CNV but did not change in ORG. Cumulative yield N removals exceeded cumulative fertilizer-N inputs by an average of 78% in CNV and 64% in ORG. These results indicated ORG management supported N availability by generating intrinsic N.


Soil Research ◽  
2004 ◽  
Vol 42 (7) ◽  
pp. 719 ◽  
Author(s):  
M. T. Moroni ◽  
P. J. Smethurst ◽  
G. K. Holz

Several soil analyses were used to estimate available N in surface soils (0–10 cm) over a 2-year period at 5 sites that supported 1- to 4-year-old Eucalyptus nitens plantations, and once in subsoils (10–120 cm) at 3 of these sites. Soils were derived from basalt (1 site previously pasture, 1 Pinus radiate, and 2 native forest) or siltstone (previously native forest). Soil analyses examined were total N, total P, total C, anaerobically mineralisable N (AMN), hot KCl-extractable N (hot KCl-N), and NH4+ and NO3– in soil solution and KCl extracts. AMN, KCl-extractable NH4+ and NO3–, and soil solution NH4+ and NO3– varied considerably with time, whereas hot KCl-N, total N, total P, and total C were temporally stable except for a gradual decline in total C with time at one site. Only total P was correlated with net N mineralisation (NNM) across all sites (r2 = 0.91, P < 0.05, n = 5). At 2–3 years after planting, soil solution and KCl-extractable NO3– dropped below 0.1 mm N and 1 μg N/g soil, respectively, at sites with NNM ≤24 kg N/ha.year (n = 3). Sites with NNM ≤24 kg N/ha.year also had ≤0.8 Mg P/ha. Although concentrations of indices of soil N availability decreased with depth, the contribution of subsoil (10–120 cm depth) to total profile N availability was estimated to be at least twice that of the top 10 cm. At an ex-pasture site, high concentrations of mineral N were found at 75–105 cm depths (KCl-extractable N, 289.3 μg N/g soil; 2.8 mm mineral N in soil solution), which may have become available to plantations as their root systems developed.


Soil Research ◽  
1998 ◽  
Vol 36 (3) ◽  
pp. 429 ◽  
Author(s):  
D. T. Strong ◽  
P. W. G. Sale ◽  
K. R. Helyar

Natural heterogeneity of soil properties was used to explore their influence on nitrogen (N) mineralisation and nitrification in undisturbed small soil volumes (soil cells; c. 1 · 7 cm3 ) sampled from a small field plot (2 m by 3 m). Soil cells (840) were randomly ascribed to 1 of 6 treatments in which soils were retained continuously moist (M10 and M30 treatments) and amended with organic N from clover (Cl10 and Cl30 treatments), dried and rewetted (DW10), or treated with urea (Ur10) (subscripts indicate soil incubation at matric potential - 10 or - 30 kPa). After 20 days of incubation at 24C, each soil cell was analysed for NO-3 -N, NH + 4 -N, pH, bulk density (BD), volumetric water content (θv), water content at - 490 kPa (θv490), and pH buffer capacity (pHBC). On 25 soil cells from each treatment, % clay, % silt, % sand, total N (% N), organic carbon (% C), and 7 cations and anions were also determined. Net N mineralisation and net nitrification occurred in all treatments, and the total mineral N at the end of the incubation was 497, 81, 73, 31, 27, and 31 µg N/g in the Ur10 Cl10, Cl30, M10, M30, and DW10 treatments, respectively. Net N mineralisation in the M30 treatment was 84% of that in the M10 treatment, and net N mineralisation in the Cl30 treatment was 86% of that in the Cl10 treatment. Fluctuations in soil pH varied markedly between treatments and over time, and it was apparent that alkaline processes were occurring in all soil cells. The heterogeneity between soil samples was substantial for all of the soil variables. Soil variables were classified in a hierarchy from the least to the most fundamental based on their stability through time. This ranking provides a conceptual tool for understanding interrelationships between soil properties and for interpreting results of regression analyses. The sampling approach adopted in this study was designed to harness the natural heterogeneity of soil properties in the small field site while keeping other properties and environmental factors, that usually vary over larger distances, constant. Both the extent of heterogeneity of soil properties and the nature of their correlations with NO-3 -N suggested that this technique would be useful in the exploration of how soil properties influence N mineralisation and nitrification.


2005 ◽  
Vol 56 (12) ◽  
pp. 1415
Author(s):  
Y. J. Kliese ◽  
R. C. Dalal ◽  
W. M. Strong ◽  
N. W. Menzies

Piggery pond sludge (PPS) was applied, as-collected (Wet PPS) and following stockpiling for 12 months (Stockpiled PPS), to a sandy Sodosol and clay Vertosol at sites on the Darling Downs of Queensland. Laboratory measures of N availability were carried out on unamended and PPS-amended soils to investigate their value in estimating supplementary N needs of crops in Australia's northern grains region. Cumulative net N mineralised from the long-term (30 weeks) leached aerobic incubation was described by a first-order single exponential model. The mineralisation rate constant (0.057/week) was not significantly different between Control and PPS treatments or across soil types, when the amounts of initial mineral N applied in PPS treatments were excluded. Potentially mineralisable N (No) was significantly increased by the application of Wet PPS, and increased with increasing rate of application. Application of Wet PPS significantly increased the total amount of inorganic N leached compared with the Control treatments. Mineral N applied in Wet PPS contributed as much to the total mineral N status of the soil as did that which mineralised over time from organic N. Rates of CO2 evolution during 30 weeks of aerobic leached incubation indicated that the Stockpiled PPS was more stabilised (19.28% of applied organic C mineralised) than the Wet PPS (35.58% of applied organic C mineralised), due to higher lignin content in the former. Net nitrate-N produced following 12 weeks of aerobic non-leached incubation was highly correlated with net nitrate-N leached during 12 weeks of aerobic incubation (R2 = 0.96), although it was <60% of the latter in both sandy and clayey soils. Anaerobically mineralisable N determined by waterlogged incubation of laboratory PPS-amended soil samples increased with increasing application rate of Wet PPS. Anaerobically mineralisable N from field-moist soil was well correlated with net N mineralised during 30 weeks of aerobic leached incubation (R2 = 0.90 sandy soil; R2 = 0.93 clay soil). In the clay soil, the amount of mineral N produced from all the laboratory incubations was significantly correlated with field-measured nitrate-N in the soil profile (0.1.5 m depth) after 9 months of weed-free fallow following PPS application. In contrast, only anaerobic mineralisable N was significantly correlated with field nitrate-N in the sandy soil. Anaerobic incubation would, therefore, be suitable as a rapid practical test to estimate potentially mineralisable N following applications of different PPS materials in the field.


2008 ◽  
Vol 23 (03) ◽  
pp. 250-259 ◽  
Author(s):  
Derek H. Lynch ◽  
Zhiming Zheng ◽  
Bernie J. Zebarth ◽  
Ralph C. Martin

AbstractThe market for certified organic potatoes in Canada is growing rapidly, but the productivity and dynamics of soil N under commercial organic potato systems remain largely unknown. This study examined, at two sites in Atlantic Canada (Winslow, PEI, and Brookside, NS), the impacts of organic amendments on Shepody potato yield, quality and soil mineral nitrogen dynamics under organic management. Treatments included a commercial hog manure–sawdust compost (CP) and pelletized poultry manure (NW) applied at 300 and 600 kg total N ha−1, plus an un-amended control (CT). Wireworm damage reduced plant stands at Brookside in 2003 and those results are not presented. Relatively high tuber yields (~30 Mg ha−1) and crop N uptake (112 kg N ha−1) were achieved for un-amended soil in those site-years (Winslow 2003 and 2004) when soil moisture was non-limiting. Compost resulted in higher total yields than CT in one of three site-years. Apparent recovery of N from CP was negligible; therefore CP yield benefits were attributed to factors other than N availability. At Winslow, NW300, but not NW600, significantly increased total and marketable yields by an average of 5.8 and 7.0 Mg ha−1. Plant available N averaged 39 and 33% for NW300 and NW600, respectively. Soil (0–30 cm) NO3−-N at harvest was low (&lt;25 kg N ha−1) for CT and CP, but increased substantially both in season and at harvest (61–141 kg N ha−1) when NW was applied. Most leaching losses of NO3−-N occur between seasons and excessive levels of residual soil NO3-N at harvest, as obtained for NW600, must be avoided. Given current premiums for certified organic potatoes, improving yields through application of amendments supplying moderate rates of N or organic matter appears warranted.


Soil Research ◽  
2008 ◽  
Vol 46 (8) ◽  
pp. 703 ◽  
Author(s):  
Guixin Pu ◽  
Mike Bell ◽  
Glenn Barry ◽  
Peter Want

The fate of nitrogen (N) applied in biosolids was investigated in a forage production system on an alluvial clay loam soil in south-eastern Queensland, Australia. Biosolids were applied in October 2002 at rates of 6, 12, 36, and 54 dry t/ha for aerobically digested biosolids (AE) and 8, 16, 48, and 72 dry t/ha for anaerobically digested biosolids (AN). Rates were based on multiples of the Nitrogen Limited Biosolids Application rate (0.5, 1, 3, and 4.5NLBAR) for each type of biosolid. The experiment included an unfertilised control and a fertilised control that received multiple applications of synthetic fertiliser. Forage sorghum was planted 1 week after biosolids application and harvested 4 times between December 2002 and May 2003. Dry matter production was significantly greater from the biosolids-treated plots (21–27 t/ha) than from the unfertilised (16 t/ha) and fertilised (18 t/ha) controls. The harvested plant material removed an extra 148–488 kg N from the biosolids-treated plots. Partial N budgets were calculated for the 1NLBAR and 4.5NLBAR treatments for each biosolids type at the end of the crop season. Crop removal only accounted for 25–33% of the applied N in the 1NLBAR treatments and as low as 8–15% with 4.5NLBAR. Residual biosolids N was predominantly in the form of organic N (38–51% of applied biosolids N), although there was also a significant proportion (10–23%) as NO3-N, predominantly in the top 0.90 m of the soil profile. From 12 to 29% of applied N was unaccounted for, and presumed to be lost as gaseous nitrogen and/or ammonia, as a consequence of volatilisation or denitrification, respectively. In-season mineralisation of organic N in biosolids was 43–59% of the applied organic N, which was much greater than the 15% (AN)–25% (AE) expected, based on current NLBAR calculation methods. Excessive biosolids application produced little additional biomass but led to high soil mineral N concentrations that were vulnerable to multiple loss pathways. Queensland Guidelines need to account for higher rates of mineralisation and losses via denitrification and volatilisation and should therefore encourage lower application rates to achieve optimal plant growth and minimise the potential for detrimental impacts on the environment.


2005 ◽  
Vol 56 (3) ◽  
pp. 245 ◽  
Author(s):  
Y. J. Kliese ◽  
R. C. Dalal ◽  
W. M. Strong ◽  
N. W. Menzies

Piggery pond sludge (PPS) was applied, as-collected (Wet PPS) and following stockpiling for 12 months (Stockpiled PPS), to a sandy Sodosol and clay Vertosol at sites on the Darling Downs of Queensland. Laboratory measures of N availability were carried out on unamended and PPS-amended soils to investigate their value in estimating supplementary N needs of crops in Australia’s northern grains region. Cumulative net N mineralised from the long-term (30 weeks) leached aerobic incubation was described by a first-order single exponential model. The mineralisation rate constant (0.057/week) was not significantly different between Control and PPS treatments or across soil types, when the amounts of initial mineral N applied in PPS treatments were excluded. Potentially mineralisable N (No) was significantly increased by the application of Wet PPS, and increased with increasing rate of application. Application of Wet PPS significantly increased the total amount of inorganic N leached compared with the Control treatments. Mineral N applied in Wet PPS contributed as much to the total mineral N status of the soil as did that which mineralised over time from organic N. Rates of CO2 evolution during 30 weeks of aerobic leached incubation indicated that the Stockpiled PPS was more stabilised (19–28% of applied organic C mineralised) than the Wet PPS (35–58% of applied organic C mineralised), due to higher lignin content in the former. Net nitrate-N produced following 12 weeks of aerobic non-leached incubation was highly correlated with net nitrate-N leached during 12 weeks of aerobic incubation (R2 = 0.96), although it was <60% of the latter in both sandy and clayey soils. Anaerobically mineralisable N determined by waterlogged incubation of laboratory PPS-amended soil samples increased with increasing application rate of Wet PPS. Anaerobically mineralisable N from field-moist soil was well correlated with net N mineralised during 30 weeks of aerobic leached incubation (R2 = 0.90 sandy soil; R2 = 0.93 clay soil). In the clay soil, the amount of mineral N produced from all the laboratory incubations was significantly correlated with field-measured nitrate-N in the soil profile (0–1.5 m depth) after 9 months of weed-free fallow following PPS application. In contrast, only anaerobic mineralisable N was significantly correlated with field nitrate-N in the sandy soil. Anaerobic incubation would, therefore, be suitable as a rapid practical test to estimate potentially mineralisable N following applications of different PPS materials in the field.


1986 ◽  
Vol 66 (4) ◽  
pp. 713-720 ◽  
Author(s):  
E. G. BEAUCHAMP

Three manures were compared with urea as sources of nitrogen for corn (Zea mays L.) on a different field site in each of 3 yr. The manures and their average [Formula: see text]–N:total N ratios were as follows: liquid poultry manure (LPM), 0.89; liquid dairy cattle manure (LCM), 0.53; and solid beef cattle manure (SBM), 0.09. The manures were applied at rates of 100, 200 and 300 kg total N ha−1. An additional LCM treatment of 600 kg total N ha−1 was also included. For comparison with the manures as N sources, urea was applied at rates of 50, 100 and 150 kg N ha−1. The yield response data were examined on the basis of a previously suggested model which predicted that all of the [Formula: see text]–N and part (e.g., 10–20%) of the organic N in manures are available for crop growth in the field. Regression analyses of paired yield data sets of urea and LCM or urea and LPM indicated that only 75–80% of the [Formula: see text]–N fraction applied in these manures was equivalent to urea-N. Thus, it was concluded that the model did not take into account net N immobilization and possibly N losses through denitrification following application. It was concluded also that N release from the organic N fraction of SBM differed substantially from that for the other manures. This conclusion was supported by greenhouse data which indicated that net N immobilization occurred for the first crop shortly after SBM was applied but this was followed by net N mineralization for a second crop as manure decomposition continued. Soil NO3− concentrations in mid-June generally increased with the urea, LPM and LCM sources of N at the higher rates of application in the field. Lower soil NO3− concentrations with SBM reflected the lower availability of N. Key words: Corn, manure N availability, Zea mays L.


2018 ◽  
Vol 19 (8) ◽  
pp. 2202 ◽  
Author(s):  
Bhakti Prinsi ◽  
Luca Espen

The availability of nitrate and ammonium significantly affects plant growth. Co-provision of both nutrients is generally the best nutritional condition, due to metabolic interactions not yet fully elucidated. In this study, maize grown in hydroponics was exposed to different nitrogen (N) availabilities, consisting of nitrate, ammonium and co-provision. Roots and leaves were analyzed after 6, 30, and 54 h by biochemical evaluations and proteomics. The ammonium-fed plants showed the lowest biomass accumulation and the lowest ratio of inorganic to organic N content, suggesting a metabolic need to assimilate ammonium that was not evident in plants grown in co-provision. The N sources differently affected the root proteome, inducing changes in abundance of proteins involved in N and carbon (C) metabolisms, cell water homeostasis, and cell wall metabolism. Notable among these changes was that some root enzymes, such as asparagine synthetase, phosphoenolpyruvate (PEP) carboxylase, and formate dehydrogenase showed a relevant upsurge only under the sole ammonium nutrition. However, the leaf proteome appeared mainly influenced by total N availability, showing changes in the abundance of several proteins involved in photosynthesis and in energy metabolism. Overall, the study provides novel information about the biochemical determinants involved in plant adaptation to different N mineral forms.


Sign in / Sign up

Export Citation Format

Share Document