scholarly journals Dynamic Monitoring of the Water Flowing Fractured Zone during the Mining Process under a River

2018 ◽  
Vol 9 (1) ◽  
pp. 43 ◽  
Author(s):  
Shuai Chang ◽  
Zhen Yang ◽  
Changfang Guo ◽  
Zhanyuan Ma ◽  
Xiang Wu

The hydrogeological conditions of coal mines in China are quite complex, and water inrush accidents occur frequently with disastrous consequences during coal extraction. Among them, the risk of coal mining under a river is the highest due to the high water transmissivity and lateral charge capacity of the unconfined aquifer under the river. The danger of mining under a river requires the accurate determination of the developmental mechanisms of the water flowing fractured zone (WFFZ) and the water flow mechanisms influenced by the specific geological conditions of a coal mine. This paper first used the transient electromagnetic (TEM) method to monitor the development of the WFFZ and the water flow mechanisms following the mining of a longwall face under a river. The TEM survey results showed that the middle Jurassic coarse sandstone aquifer and the Klzh unconfined aquifer were the main aquifers of the 8101 longwall panel, and the WFFZ reached the aquifers during the mining process. Due to the limited water reserves in the dry season, the downward flowing water mainly came from the lateral recharge in the aquifer. The water inrush mechanisms of the 8101 longwall panel in Selian No.1 Coal mine were analyzed based on the water flow mechanisms of the aquifer and the numerical simulation results. This provides theoretical and technical guidance to enact safety measures for mining beneath aquifers.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chunde Piao ◽  
Jinjun Li ◽  
Dangliang Wang ◽  
Wei Qiao

The distributed optical fiber sensing (DOFS) is a technique that can obtain full spatial and temporal information concerning the behavior of a large range of measurand fields along a fiber path and realize the distributed monitoring of the overburden section under mining. To calculate the height of water-flowing fractured zone caused by the exploitation of coal, this study employed distributed optical fiber sensors with OSI-C-S optical frequency domain reflectometry (OFDR) technology and designed a similar-material model test based on the engineering geological conditions of Daliuta Coal Mine. Through the test, deformation characteristics of overlying strata were studied, the linear relationship was summarized between the strain gradient and the shear stress measured by fiber sensors when the rock layer cracks, and a method was proposed of using the measured strain to measure the height of the water-flowing fractured zone in overlying strata. The test results show that there are several locations where the sign of the shear stress changes (positive to negative or vice versa) in the overlying strata during the initial stage of coal seam mining. As the working face advanced, the change locations gradually concentrated at the place where the rock cracks. By identifying the breakpoints of the rock and the locations where the sign of the shear stress measured by fiber sensors changes, this paper calculated the height of the water-flowing fractured zone in Daliuta Coal Mine. After comparing the height with the abscission layer position in the model test and the predicted height by the empirical formulas in the specification, it has been found that the three results are basically consistent, which in turn verifies the accuracy of this method.



Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Shichuan Zhang ◽  
Baotang Shen ◽  
Yangyang Li ◽  
Shengfan Zhou

Water inrush in underground mines is a major safety threat for mining personnel, and it can also cause major damage to mining equipment and result in severe production losses. Water inrush can be attributed to the coalescence of rock fractures and the formation of water channel in rock mass due to the interaction of fractures, hydraulic flow, and stress field. Hence, predicting the fracturing process is the key for investigating the water inrush mechanisms for safe mining. A new coupling method is designed in FRACOD to investigate the mechanisms of water inrush disaster (known as “Luotuoshan accident”) which occurred in China in 2010 in which 32 people died. In order to investigate the evolution processes and mechanisms of water inrush accident in Luotuoshan coal mine, this study applies the recently developed fracture-hydraulic (F-H) flow coupling function to FRACOD and focuses on the rock fracturing processes in a karst collapse column which is a geologically altered zone linking several rock strata vertically formed by the long-term dissolution of the flowing groundwater. The numerical simulation of water inrush is conducted based on the actual geological conditions of Luotuoshan mining area, and various materials with actual geological characteristics were used to simulate the rocks surrounding the coal seam. The influences of several key factors, such as in situ stresses, fractures on the formation, and development of water inrush channels, are investigated. The results indicate that the water inrush source is the Ordovician limestone aquifer, which is connected by the karst collapse column to No. 16 coal seam; the fracturing zone that led to a water inrush occurs in front of the roadway excavation face where new fractures coalesced with the main fractured zone in the karst collapse column.



2015 ◽  
Vol 1092-1093 ◽  
pp. 1448-1454
Author(s):  
Yan Zhang

The first working face production has suspend because of the great roof water inrush in Mindongyi coal mine, which has weak roof strata and mining use the fully mechanized caving method. In order to detect the height of water-flowing fractured zone, loses of drilling fluid observation method has carried on the flied test, the results showed that while the full-mechanized caving mining thickness is 7.7 m, the height of water-flowing fractured zone is 79.78 m, and the ratio of height to thickness is 10.36, meanwhile, the numerical simulation and similar material simulation have proved the test results are correct. The study enriched the domestic research fruits of the height of water flowing fractured zone, and provided technical references for Mindongyi coal mine mining.



2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Jihua Zhang ◽  
Yun Dong ◽  
Yadong Chen ◽  
Yang Jiang ◽  
Huasheng Sun ◽  
...  

Water inrush is a common geological disaster during the roadway excavation process in the broken zone of water-rich faults. In this paper, the 15107 mining roadway built by Yuxing coal mine in such a fault zone was used as a case study to determine the water content of the surrounding rocks and a fault zone using the transient electromagnetic method (TEM). Also, the mechanics characteristics of such rocks in both saturated and unsaturated states were analyzed, a computational model for fluid-solid coupling in the water-rich fault fracture zone was established, and the permeability coefficient of the rocks under both shield support and bolt-grouting support was compared, along with analyzing the changes in pore pressure, fissure water velocity, and characteristics of deformation in the surrounding rocks. The numerical simulation results show that the fault range has an influence of about 20 m, which causes the forms of permeability coefficient to change like a hump. The permeability coefficient in the fractured zone is the largest, and the mutation rate at the fault plane is faster. Bolting not only reduces the permeability coefficient of the surrounding rock that is 1/10 of the beam support but also prevents the roof fissure water inrushing the roadway and the surrounding rock of the floor, while also causing the pore-water pressure to decrease, even reduce to zero, in front of the working face and floor. The flow velocity of the fissure water can be decreased by bolting, which can effectively control the deformation of the surrounding rock by 38.7%∼65% compared with the shield support. The practice results show that this method can effectively recover the cracks surrounding the mining roadway and stop gushing water. Concurrently, it successfully controls deformation of the surrounding rocks in the fault zone, thus ensuring stability of the roadway and facilitating safer mining production.



Author(s):  
Kai Huang ◽  
Long Xu ◽  
Fusheng Zha ◽  
Zhitang Lu ◽  
Jiwen Wu ◽  
...  

The complicated geological conditions, including the Fault Sun, in East No. 2 mining sub-area of the Longdong coal mine will influence the stability of strata during mining, leading to serious geological hazards. To circumvent this issue, a similarity simulation experiment was designed and performed in this study, in which the failure characteristics and evolution of displacement and stress within the strata were investigated, and the optimum width of a waterproof coal pillar was determined. The results showed that, as the working face progressed, the coal seam roof gradually deformed, from initial caving of the immediate roof to complete movement and curved subsidence of the entire roof. Significant changes in displacement and stress within the coal seam roof were recorded, and these increased during continuous mining activity. Displacement and stress difference on either side of the fault gradually increased and reached remarkable values with increase in mining distance. On the basis of the experiment results, water inrush is believed to be caused by the interaction between mining and the fault, and, as calculated from parameters collected in field investigations, a waterproof coal pillar of 50 m width should be established to prevent Fault Sun activation, thereby reducing the risk of water inrush from neighbouring aquifers.



2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Shengrong Xie ◽  
Qing Zhang ◽  
Dongdong Chen ◽  
En Wang ◽  
Junchao Zeng ◽  
...  

The stability of the extra-large width open-off cut of a longwall panel has been a major concern in underground solid backfill mining. In this study, a numerical model was built with FLAC3D for analyzing the characteristics of the effective prestressed field distribution in the extra-large width open-off cut roof in Xingdong coal mine, China. The numerical results obtained in this study demonstrate that an anchorage rock beam bearing structure (ARBBS) can be formed. Additionally, the ARBBS model was also constructed. The analytical expression of the maximum shear stress (MSS) in the model was obtained under the functions of composite influencing factors. Then, the MSS evolution laws in ARBBS with different thicknesses and spans were investigated using MATLAB software. The stress changes in ARBBS with a span of 15 m were compared and analyzed under the functions of single and composite influencing factors. The cooperative control principle of the roof ARBBS and two rib anchorage bearing structures was also clarified. Accordingly, a combined support scheme for an 11.5 m-wide open-off cut was proposed. The field applications demonstrated that the scheme successfully controlled the failure and deformation of the surrounding rock, thus contributing to the fast development of the open-off cut and the quick and timely installations of the backfill mining equipment. This validated the results of the ARBBS model. This study is expected to provide helpful references for other extra-large width open-off cut or roadway stability investigations and rock support design under similar engineering and geological conditions.



2021 ◽  
Vol 299 ◽  
pp. 02015
Author(s):  
Ying Gao ◽  
Tao Li ◽  
Hongyang Liu

Groundwater flow into the mine by coal mining, which threatens the safety of coal mine. Therefore, it is necessary to identify the source of the water flowing into the coal mine. Taking binhuang mining area in Shaanxi Province as the research background, the discrimination models of six water inrush sources had been studied. The composition of 256 water samples was determined and the water quality characteristics of 6 water sources were analyzed. Fisher linear discriminant function model was established by selecting 9 indexes of water quality components. By testing the discriminant effect, it is considered that the probability of K1L aquifer misjudging as Q aquifer and surface water is high, and the misjudgment rate is 30.4%. Combined with the analysis of geological conditions, it is considered that K1L aquifer has a good hydraulic connection with Q aquifer and surface water. Aiming at the problem of misjudgment, the neural network analysis model is used, and the misjudgment rate is reduced to 0%.



Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Zhijie Wen ◽  
Suolin Jing ◽  
Yujing Jiang ◽  
Lei Tian ◽  
Jinhao Wen ◽  
...  

To accurately detect the development height of the water flowing fractured zone (WFFZ) in the overlying strata of the working face after mining under water and to ensure the safety and reliability of coal mining, the coal seam located under Weishanhu Lake in the Jisan coal mine was used as the experimental system. A similar laboratory simulation and water injection-based fracturing test system were used with the working face before and after mining activity to calculate, quantitatively detect, and qualitatively analyze the development height of the WFFZ in the overlying strata. Meanwhile, a flow-stress-damage model and its criterion of fracture expansion were established based on the Mohr-Coulomb criterion, and the FLAC 3D software was used to simulate the deformation and failure of the overlying strata and the evolution of WFFZ during the mining process. The results showed that the height ranges of the WFFZ beneath Weishanhu Lake of the Jisan coal mine as established by the above three methods are 30-45 m, 30-48 m, and 30-50 m. In the process of mining, the caving zone and fractured zone are, respectively, subjected to tensile failure and shear failure. The development height of the water flowing through the fractured zone in the overlying strata is basically consistent with the range of the “breaking arch.” The flow-stress-damage model and its criterion of fracture expansion can be applied to the fracture law of overlying strata under water under similar geological conditions.



2021 ◽  
Author(s):  
Tingye Qi ◽  
Xiaoming Pei ◽  
Guorui Feng ◽  
Huiru Wei

Abstract Water inrush disasters poses a great threat to the safe exploitation of coal resources. To solve this problem, the transient electromagnetic method(TEM) was proposed to accurately detect the water accumulation in the goaf. The electromagnetic response characteristics of different water-filled goaves were studied by electromagnetic field theory, numerical simulation and field verification. Through the models of 100% water accumulation, 50% water accumulation, 0% water accumulation, 100% water accumulation with collapsed rock, 50% water accumulation with collapsed rock and 0% water accumulation with collapsed rock goaf, the characteristics of induced voltage attenuation curves were studied. Meanwhile, the relationship between the attenuation voltage value and area of the transmitting coil and the depth of the goaf were also simulated. The results illustrate that the attenuation curve of induced voltage presented a regular exponential decay form in the 0% water accumulation model but existed abnormal exaltation for voltage in water-filled model. Through the linear fitting curve, it can be seen that the abnormal intensity of the induced voltage becomes stronger as the distance between the measuring point and the center of the target decrement. Moreover, the abnormal amplitude of the induced voltage increases with the rise of the water accumulation and collapsed rock will weakly reduce the low-resistance anomalous effect on the water-accumulated goaf. In addition, the response value of the attenuation voltage increased in second-order as the area of the transmitting coil increases, but decreased in third-order as the depth of the target body increases. The field detection results of the Majiliang coal mine also confirmed the theoretical analysis and the numerical simulation. The conclusions had important guiding significance for accurate detection of coal mine goaf.



Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Huicong Xu ◽  
Xingping Lai ◽  
Shuai Zhang ◽  
Yun Zhang ◽  
Pengfei Shan ◽  
...  

Abstract Water-conducting fractured zone is the direct inducement of water inrush, water losing, and environmental deterioration in coal mines. How to predict the height of water-conducting fractured zone economically and accurately has always been the research difficulty of water-preserved mining. The paper selects the Meihuajing coal mine in Ningdong mining area as the engineering background. Firstly, transform the distribution law of the water-conducting fractured zone into a deterioration mechanism of coal-rock strength under the action of water-rock. Through laboratory tests, the water-rock coupling degradation law of rock mass under uniaxial action is revealed, and an intelligent statistical model of damage rate response under different water content is proposed. Secondly, based on the cross-scale elastic modulus calibration principle and the rate response intelligent statistical model proposed above, the borehole elastic modulus instrument is used to quantitatively characterize the strength characteristics of elastic modulus rate response law and field lithological parameters. Finally, based on the 18 samples of the water-conducting fractured zone, a height prediction model of a water-conducting fractured zone based on the measured value of elastic modulus is proposed by using the method of PSO-SVR. Taking R2 and RMSE as evaluation indexes, the error comparison between PSO-SVR and the empirical formula is carried out. Research indicates that, compared with the empirical formula, R2 of the PSO-SVR model increased by 18.3% and RMSE decreased by 92.7%. The predicted value of the PSO-SVR is consistent with the measured value, which significantly improves the prediction accuracy of the height of the water-conducting fractured zone. It provides a theoretical basis and technical support for the coordinated development of safe and efficient development of coal and ecological protection in Ningdong mining area.



Sign in / Sign up

Export Citation Format

Share Document