scholarly journals Research on a Rail Defect Location Method Based on a Single Mode Extraction Algorithm

2019 ◽  
Vol 9 (6) ◽  
pp. 1107 ◽  
Author(s):  
Bo Xing ◽  
Zujun Yu ◽  
Xining Xu ◽  
Liqiang Zhu ◽  
Hongmei Shi

This paper proposes a rail defect location method based on a single mode extraction algorithm (SMEA) of ultrasonic guided waves. Simulation analysis and verification were conducted. The dispersion curves of a CHN60 rail were obtained using the semi-analytical finite element method, and the modal data of the guided waves were determined. According to the inverse transformation of the excitation response algorithm, modal identification under low-frequency and high-frequency excitation was realized, and the vibration displacements at other positions of a rail were successfully predicted. Furthermore, an SMEA for guided waves is proposed, through which the single extraction results of four modes were successfully obtained when the rail was excited along different excitation directions at a frequency of 200 Hz. In addition, the SMEA was applied to defect location detection, and the single reflection mode waveform of the defect was extracted. Based on the group velocity of the mode and its propagation time, the distance between the defect and the excitation point was measured, and the defect location was predicted as a result. Moreover, the SMEA was applied to locate the railhead defect. The detection mode, the frequency, and the excitation method Were selected through the dispersion curves and modal identification results, and a series of signals of the sampling nodes were obtained using the three-dimensional finite element software ANSYS. The distance between the defect and the excitation point was calculated using the SMEA result. When compared with the structure of the simulated model, the errors obtained were all less than 0.5 m, proving the efficacy of this method in precisely locating rail defects, thus providing an innovated solution for rail defect location.

2014 ◽  
Vol 06 (05) ◽  
pp. 1450059 ◽  
Author(s):  
KAIGE ZHU ◽  
DAINING FANG

Dispersion curves for waveguide structures are an important prerequisite for the implementation of guided wave-based nondestructive evaluation (NDE) approach. Although many methods exist, each method is only applicable to a certain type of structures, and also requires complex programming. A Bloch theorem-based finite element method (FEM) is proposed to obtain dispersion curves for arbitrary waveguides using commercial finite element software in this paper Dispersion curves can be obtained for a variety of structures, such as homogeneous plates, multilayered structures, finite cross section rods and honeycomb sandwiches. The propagation of guided waves in honeycomb sandwich plates and beams are discussed in detail. Then, dispersion curves for honeycomb sandwich beams are verified by experiments.


2010 ◽  
Vol 2010 ◽  
pp. 1-17 ◽  
Author(s):  
F. Schöpfer ◽  
F. Binder ◽  
A. Wöstehoff ◽  
T. Schuster

Dispersion curves of elastic guided waves in plates can be efficiently computed by the Strip-Element Method. This method is based on a finite-element discretization in the thickness direction of the plate and leads to an eigenvalue problem relating frequencies to wavenumbers of the wave modes. In this paper we present a rigorous mathematical background of the Strip-Element Method for anisotropic media including a thorough analysis of the corresponding infinite-dimensional eigenvalue problem as well as a proof of the existence of eigenvalues.


Author(s):  
Mihai V. Predoi ◽  
Michel Castaings ◽  
Bernard Hosten ◽  
Christophe Bacon

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Yao Liu ◽  
Xiucheng Liu ◽  
Chehua Yang ◽  
Wenxin Guo ◽  
Bin Wu ◽  
...  

In the study, ultrasonic longitudinal mode guided waves were employed to detect defects in elbowed tubes (without welds) with a diameter of 10 mm. Finite element simulation results highlighted that the emitted L(0,1) mode guided waves experienced strong reflection and mode conversion at the elbow region to generate F(1,1) mode, followed by slow and weak F(2,1) mode. The guided wave reflected from the elbow with a through-wall defect was manifested as two overlapped wave packets, which were good indicators of a defective elbow. To conduct L(0,1) mode guided waves inspection on the small-diameter elbowed tubes, a novel tailored squirrel-cage magnetostrictive sensor was employed in the experiment. The new sensor employed the configuration of segmental iron-cobalt strips and small-size permanent magnet arrays. The entire sensor is composed of two identical C-shaped sensor elements and can be recycled and installed conveniently. Experimental results obtained from healthy and defective tubes were consistent with the conclusions obtained from finite element simulations. An artificial through-wall defect at the elbow and a notch defect at the straight part of the tube could be simultaneously detected by L(0,1) mode guided waves through comparing experimental signals with simulation results.


Author(s):  
Takahiro Hayashi ◽  
Koichiro Kawashima ◽  
Zongqi Sun ◽  
Joseph L. Rose

Guided waves can be used in pipe inspection over long distances. Presented in this paper is a beam focusing technique to improve the S/N ratio of the reflection from a tiny defect. Focusing is accomplished by using non-axisymmetric waveforms and subsequent time delayed superposition at a specific point in a pipe. A semi-analytical finite element method is used to present wave structure in the pipe. Focusing potential is also studied with various modes and frequencies.


1986 ◽  
Vol 34 (7) ◽  
pp. 896-904 ◽  
Author(s):  
Kun-Mu Chen ◽  
D. Nyquist ◽  
E. Rothwell ◽  
L. Webb ◽  
B. Drachman

Author(s):  
Z Abbasi ◽  
F Honarvar

In recent years, Higher Order Modes Cluster (HOMC) guided waves have been considered for ultrasonic testing of plates and pipes. HOMC guided waves consist of higher order Lamb wave modes that travel together as a single nondispersive wave packet. The objective of this paper is to investigate the effect of frequency-thickness value on the contribution of Lamb wave modes in an HOMC guided wave. This is an important issue that has not been thoroughly investigated before. The contribution of each Lamb wave mode in an HOMC guided wave is studied by using a two-dimensional finite element model. The level of contribution of various Lamb wave modes to the wave cluster is verified by using a 2D FFT analysis. The results show that by increasing the frequency-thickness value, the order of contributing modes in the HOMC wave packet increases. The number of modes that comprise a cluster also increases up to a specific frequency-thickness value and then it starts to decrease. Plotting of the cross-sectional displacement patterns along the HOMC guided wave paths confirms the shifting of dominant modes from lower to higher order modes with increase of frequency-thickness value. Experimental measurements conducted on a mild steel plate are used to verify the finite element simulations. The experimental results are found to be in good agreement with simulations and confirm the changes observed in the level of contribution of Lamb wave modes in a wave cluster by changing the frequency-thickness value.


2002 ◽  
Vol 8 (2) ◽  
pp. 151-159 ◽  
Author(s):  
F. Ahmad ◽  
N. Kiyani ◽  
F. Yousaf ◽  
M. Shams

Dispersion relations are obtained for the propagation of symmetric and antisymmetric modes in a free transversely isotropic plate. Dispersion curves are plotted for the first four symmetric modes for a magnesium plate immersed in water. The first mode is highly damped and switches over to the second mode when the normalized frequency exceeds 12.


Author(s):  
Shaojie Chen ◽  
Shaoping Zhou ◽  
Yong Li ◽  
Lanzhu Zhang

Ultrasonic guided wave technology combined with sparse transducer array provides an efficient and relatively cost-effective means of defect detection and monitoring for rapid interrogation of large in plate-like structures. However, imaging algorithm used baseline subtraction methods may be compromised under mismatched environment and operational conditions. A defect location method based on forward-scattering wave and fuzzy c-means clustering is proposed in this paper. The distance coefficient including location information between sensor pair using exciting and receiving signal and defect is defined to explain feasibility of the method proposed in this paper. A Parallel line array is evaluated using the method to locate defect. Experimental results show that the proposed method can effectively reduce the influence of mismatched environment and operational conditions on the defect location.


Sign in / Sign up

Export Citation Format

Share Document