scholarly journals CO2 Capture of the Gas Emission, Using a Catalytic Converter and Airlift Bioreactors with the Microalga Scenedesmus dimorphus

2019 ◽  
Vol 9 (16) ◽  
pp. 3212 ◽  
Author(s):  
Citlalli Adelaida Arroyo ◽  
José Luis Contreras ◽  
Beatriz Zeifert ◽  
Clementina Ramírez C.

A process composed by a catalytic converter and three sequential Airlift photobioreactors containing the microalga Scenedesmus dimorphus was studied to capture CO2, NOx, and CO from emissions of a steam boiler which was burning diesel. The catalytic converter transformed to CO2 a maximum of 78% of the CO present in the combustion gas. The effects of shear rate, light intensity, and light/dark cycles on the biomass growth of the algae were studied. It was observed that at low shear rates (Re ≈ 3200), a high productivity of 0.29 gcel L−1 d−1 was obtained. When the microalga was exposed to 60.75 µmol·m−2·s−1 of intensity of light and a light/dark cycle of 16/8 h, a maximum productivity of 0.44 gcel L−1 d−1 and a maximum CO2 fixation rate 0.8 g CO2 L−1·d−1 were obtained. The maximum CO2 removal efficiency was 64.3%, and KLa for CO2 and O2 were 1.2 h−1 and 3.71 h−1 respectively.

2006 ◽  
Vol 317-318 ◽  
pp. 81-84 ◽  
Author(s):  
Masahiro Kato ◽  
Yukishige Maezawa ◽  
Shin Takeda ◽  
Yoshikazu Hagiwara ◽  
Ryosuke Kogo ◽  
...  

A novel CO2 separation technique that employs the chemical reaction of lithium-containing oxides with CO2 has been developed. Since this method is effective in the temperature range of 450oC to 700oC, it has the advantages of enabling CO2 separation in power plants without lowering the temperature and of absorbing CO2 from the steam-methane reforming process at the same time. Because the absorption is exothermic and the steam reforming is endothermic, the energy loss is expected to be significantly reduced by combining the reactions. Hydrogen yields are expected to be higher because the equilibrium may be shifted by the removal of the CO2 byproduct. We have therefore proposed a pre-combustion CO2 capture system using lithium silicate and steam reforming. Bench-scale experiments were performed to measure the methane conversion and CO2 removal efficiency in order to evaluate the feasibility of the pre-combustion CO2 capture system. At temperatures of less than 650oC, the methane conversion in the case of mixture of catalyst and absorbent was higher than that in the case of catalyst alone. In addition, the CO2 removal efficiency is almost 90%. These results appear to indicate that pre-combustion CO2 capture combined with steam reforming is feasible.


2019 ◽  
Vol 1 (2) ◽  
pp. 55-57
Author(s):  
NUR FARHANA AJUA MUSTAFA ◽  
Azmi bin Mohd Shariff ◽  
WeeHorng Tay ◽  
Hairul Nazirah Abdul Halim ◽  
Siti Munirah Mhd Yusof

This article reports the absorption removal efficiency for carbon dioxide (CO2) capture from natural gas using an environmental friendly solvent, potassium carbonate promoted with glycine. Recently, CO2 capture using this solvent (with precipitating) was studied by previous researchers. However, the precipitates of the solvent increase the potential of blockage in the packing and piping thus result failure in absorption processes. Therefore, this study focused to assess the CO2 removal efficiency of non-precipitating potassium carbonate promoted with glycine. This green solvent contains aqueous blend of 20 wt% potassium carbonate and 8 wt% glycine. The absorption performance of the solvent was obtained by demonstrated a few experimental works using a bench scale packed absorption column. The packing type was Sulzer metal gauze and the column consisted of six sampling point which located equidistance along the packing The system was running over a range of liquid flow rate 1.81-7.22 m3/m2.h at fixed operating pressure (4 Mpa), CO2 inlet concentration (20%), gas flow rate (33 kmol/m2.h) and solvent temperature (60 . The effect of liquid flow rate was assessed in term of its CO2 removal efficiency and concentration profile along the packing. The study shows the increasing trend of CO2 removal as liquid flow rate increases. Higher liquid/molar flow rate gas (L/G) offers a better absorption performance compared to lower L/G ratio. This study demonstrated the efficient absorption up to 77 % using non-precipitating potassium carbonate promoted with glycine.


2014 ◽  
Vol 69 (6) ◽  
Author(s):  
Astri Rinanti ◽  
Kania Dewi ◽  
Edwan Kardena ◽  
Dea Indriani Astuti

Carbon dioxide (CO2) sequestration by green microalgae is receiving increased attention in alleviating the impact of increasing CO2 in the atmosphere. The goal of this study was to explore the capacity of mixed culture green microalgae Chlorella sp, Scenedesmus obliquus, and Ankistrodesmus sp. as carbon capture and storage agent to enhance CO2 uptake rate and CO2 removal efficiency which was observed at elevated CO2 aeration rates of 2, 5, and 8 L min-1 supplied to vertical photobioreactor continuously in batch system culture. The operation condition of this research were 6.5-7.5 pH, temperature of 300C, light intensity  of 4000 lux with 16 hours light period and 8 hours dark period, and high pure CO2 elevated level of 5 to 18 (concentration in %; v/v in the aeration gas) as inorganic carbon. The maximum CO2 removal efficiency of the mix culture was 59.80% when the biomass was obtained at 4.90 gL-1 and CO2 flow rate (Lmin-1) of 5 vvm in a vertical photobioreactor. The value of CO2 removal efficiency improved by almost 200% and 120% as compared to that in the low and high aeration rate (2 Lmin-1 and 8 Lmin-1) respectively. The CO2 up take rate of a mixed culture reach 979.62 mg carbon L-1day-1, which was enhancing by 3-fold in high aeration rate (8 Lmin-1). The results showed that the CO2 removal efficiency and carbon uptake rate was related to biomass concentration and aeration rate of CO2 supplied.


2020 ◽  
Vol 12 (9) ◽  
pp. 3873
Author(s):  
Nur Farhana Ajua Mustafa ◽  
Azmi Mohd Shariff ◽  
Wee Horng Tay ◽  
Hairul Nazirah Abdul Halim ◽  
Siti Munirah Mhd Yusof

The removal of carbon dioxide (CO2) at offshore operation requires an absorption system with an environmentally friendly solvent that can operate at elevated pressure. Potassium carbonate promoted with glycine, PCGLY, is a green solvent that has potential for offshore applications. For high solvent concentrations at elevated pressure, the by-product of CO2 absorption consists of precipitates that increase operational difficulty. Therefore, this study was done to assess the CO2 absorption performance of non-precipitated PCGLY with concentration 15wt%PC+3wt%GLY, which is known to have comparable solubility performance with MDEA. A packed absorption column was used to identify the CO2 removal efficiency, mass transfer coefficient in liquid film, k l a e , and overall volumetric mass transfer coefficient, K G a v . A simplified rate-based model was used to determine k l a e and K G a v based on the experimental data with a maximum MAE value, 0.057. The results showed that liquid flow rates and liquid temperature gives significant effects on the k l a e and K G a v profile, whereas gas flow rate and operating pressure had little effect. The CO2 removal efficiency of PCGLY was found to be 77%, which was only 2% lower than 1.2 kmol/m3 MDEA. K G a v of PCGLY is comparable with MDEA. The absorption process using PCGLY shows potential in the CO2 sweetening process at offshore.


Energy ◽  
1997 ◽  
Vol 22 (2-3) ◽  
pp. 349-352 ◽  
Author(s):  
Hidenao Yamada ◽  
Narumasa Ohkuni ◽  
Susumu Kajiwara ◽  
Kazuhisa Ohtaguchi

2009 ◽  
Vol 4 (1) ◽  
Author(s):  
Tarmidi Abu Bakar ◽  
Mohamed Azlan Hussain

The design of a fire-tube shell boiler consists of a bundle of tubes contained inside a shell. The heat transfer process from the combustion gas to the boiling water via the tube surface is extremely complicated as it involves combustion, convection, conduction, and boiling process. Severe boiling and evaporating processes take place outside the fire-tube shell boiler where the steam is generated. However, many processes such as the regeneration of absorbent for CO2 removal needs optimum steam consumption, which reflects its high costs for operation. Therefore, good control performance of steam pressure becomes important. This study is aimed at developing a control scheme to minimize the effect of over-firing on the fire-tube shell boiler which impacts on excessive fuel consumption. The Neural Network Predictive Controller (NNPC) is used in this work, using the optimization and neural toolboxes which are written in the MATLAB code and were compared with the PID controller for set-point tracking and disturbance rejection ability. The comparison reveals that NNPC gives an excellent alternative to PID controller due to the non-linearity of the fire-tube shell boiler system. Since NNPC can reduce the fuel consumption by minimizing actuator moves, the control of boiler and burners in this plant in Brunei is recommended to be upgraded to replace the existing PID controller.


2020 ◽  
Vol 15 (2) ◽  
pp. 579-590
Author(s):  
Puriya Mohamad Gholy Nejad ◽  
Mohammad Sadegh Hatamipour

In this study, CO2 removal efficiency from flue gas was investigated in a fluidized bed reactor under semi-dry conditions. A lab-scale fluidized bed reactor, filled with inert glass beads, was used to investigate the effect of operating parameters on the CO2 removal efficiency using calcium hydroxide slurry as the absorbent. The Taguchi design method was used to design the experiments. The maximum inlet concentration of CO2 was 3 vol%. The most important factors were the reaction surface area, inlet gas velocity, inlet CO2 concentration, absorbent solution flow rate, inlet gas temperature and calcium hydroxide slurry concentration. The experimental results indicated that the CO2 removal efficiency increased when increasing the effective surface area of the reaction. Moreover, the removal efficiency increased by decreasing the input gas flow rate and inlet CO2 concentration. By performing experiments under optimum conditions, the maximum obtained CO2 removal efficiency was 79%. Copyright © 2020 BCREC Group. All rights reserved 


2021 ◽  
Author(s):  
Soichi Kikkawa ◽  
Kazushi Amamoto ◽  
Yu Fujiki ◽  
Jun Hirayama ◽  
Gen Kato ◽  
...  

The phase separation between a liquid amine and the solid carbamic acid exhibited >99% CO2 removal efficiency under a large-scale gas stream of 400 ppm CO2. Isophorone diamine [IPDA; 3-(aminomethyl)-3,5,5-trimethylcyclohexylamine] reacted with CO2 in the CO2/IPDA molar ratio of ≥ 1 even in H2O as a solvent. The captured CO2 was completely desorbed at 333 K because the disolved carbamate ion releases CO2 at low temperature. The reusability of IPDA under CO2 adsorption-and-desorption cycles without degradation, the >95% efficinecy kept for 100 hours under direct air capture condition, and high CO2 capture rate (214 mmol/h for 1 mol amine) suggest that the phase separation system using IPDA is robust and durable for practical use.


2014 ◽  
Vol 69 (6) ◽  
Author(s):  
Astri Rinanti ◽  
Kania Dewi ◽  
Dea Indriani Astuti ◽  
Nico Halomoan

Emission of carbon dioxide (CO2) is a major contributor to global warming. Biofixation of CO2 by microalgae in photobioreactors seems to be a promising strategy for CO2 mitigation. The research to determine the overall mass transfer coefficient (kLa) has been done to find the way on biomitigation CO2 emission by using biologically Carbon Capture and Sequestration method. This research was conducted according to green microalgae Scenedesmus obliquus activity, which is cultivated in a bubble photobioreactor through the mass transfer process that assumed adequate mixing occurs. Flow rate of CO2 that supplied to the system were 2 L/min, 5 L/min and 8 L/min, when each rate flowed into the photobioreactor with high CO2 concentration (v/v) of 2%, 5% and 10%. The highest CO2 removal efficiency occurred at culture that supplied with an CO2-enriched air flow rate of 5 L/min. The kLa (CO2) value is the highest in 0.3582/day at 2% CO2 concentration and flow rate of 2 L/min, while the lowest is in 0.0503/day at 5% CO2 concentration and flow rate of 8 L/min. In terms of solubility is inversely proportional to the flow rate, the less carbon dioxide is dissolved at the rate of 8 L/min as well as the value of the kLa. The results showed that the variation of flow rate will affect the amount of mass transfer coefficient, growth rate and cell biomass.  Higher flow rate decreases kLa value as well as CO2 removal efficiency.


Sign in / Sign up

Export Citation Format

Share Document