scholarly journals Ultrathin and Electrically Tunable Metamaterial with Nearly Perfect Absorption in Mid-Infrared

2019 ◽  
Vol 9 (16) ◽  
pp. 3358 ◽  
Author(s):  
Yuexin Zou ◽  
Jun Cao ◽  
Xue Gong ◽  
Ruijie Qian ◽  
Zhenghua An

Metamaterials integrated with graphene exhibit tremendous freedom in tailoring their optical properties, particularly in the infrared region, and are desired for a wide range of applications, such as thermal imaging, cloaking, and biosensing. In this article, we numerically and experimentally demonstrate an ultrathin (total thickness < λ 0 / 15 ) and electrically tunable mid-infrared perfect absorber based on metal–insulator–metal (MIM) structured metamaterials. The Q-values of the absorber can be tuned through two rather independent parameters, with geometrical structures of metamaterials tuning radiation loss (Qr) of the system and the material loss (tanδ) to further change mainly the intrinsic loss (Qa). This concise mapping of the structural and material properties to resonant mode loss channels enables a two-stage optimization for real applications: geometrical design before fabrication and then electrical tuning as a post-fabrication and fine adjustment knob. As an example, our device demonstrates an electrical and on-site tuning of ~5 dB change in absorption near the perfect absorption region. Our work provides a general guideline for designing and realizing tunable infrared devices and may expand the applications of perfect absorbers for mid-infrared sensors, absorbers, and detectors in extreme spatial-limited circumstances.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michał Dudek ◽  
Rafał Kowerdziej ◽  
Alessandro Pianelli ◽  
Janusz Parka

AbstractGraphene-based hyperbolic metamaterials provide a unique scaffold for designing nanophotonic devices with active functionalities. In this work, we have theoretically demonstrated that the characteristics of a polarization-dependent tunable hyperbolic microcavity in the mid-infrared frequencies could be realized by modulating the thickness of the dielectric layers, and thus breaking periodicity in a graphene-based hyperbolic metamaterial stack. Transmission of the tunable microcavity shows a Fabry–Perot resonant mode with a Q-factor > 20, and a sixfold local enhancement of electric field intensity. It was found that by varying the gating voltage of graphene from 2 to 8 V, the device could be self-regulated with respect to both the intensity (up to 30%) and spectrum (up to 2.1 µm). In addition, the switching of the device was considered over a wide range of incident angles for both the transverse electric and transverse magnetic modes. Finally, numerical analysis indicated that a topological transition between elliptic and type II hyperbolic dispersion could be actively switched. The proposed scheme represents a remarkably versatile platform for the mid-infrared wave manipulation and may find applications in many multi-functional architectures, including ultra-sensitive filters, low-threshold lasers, and photonic chips.


2020 ◽  
Vol 12 (4) ◽  
pp. 1-9
Author(s):  
Yindi Wang ◽  
Hongxia Liu ◽  
Shulong Wang ◽  
Ming Cai

Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2513 ◽  
Author(s):  
Christian Ranacher ◽  
Cristina Consani ◽  
Andreas Tortschanoff ◽  
Lukas Rauter ◽  
Dominik Holzmann ◽  
...  

The detection of infrared radiation is of great interest for a wide range of applications, such as absorption sensing in the infrared spectral range. In this work, we present a CMOS compatible pyroelectric detector which was devised as a mid-infrared detector, comprising aluminium nitride (AlN) as the pyroelectric material and fabricated using semiconductor mass fabrication processes. To ensure thermal decoupling of the detector, the detectors are realized on a Si3N4/SiO2 membrane. The detectors have been tested at a wavelength close to the CO2 absorption region in the mid-infrared. Devices with various detector and membrane sizes were fabricated and the influence of these dimensions on the performance was investigated. The noise equivalent power of the first demonstrator devices connected to a readout circuit was measured to be as low as 5.3 × 10 − 9 W / Hz .


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1496
Author(s):  
Yijun Cai ◽  
Yanfen Hang ◽  
Yuanguo Zhou ◽  
Jinfeng Zhu ◽  
Jingwen Yang ◽  
...  

In this study, a label-free multi-resonant graphene-based biosensor with periodic graphene nanoribbons is proposed for detection of composite vibrational fingerprints in the mid-infrared range. The multiple vibrational signals of biomolecules are simultaneously enhanced and detected by different resonances in the transmission spectrum. Each of the transmission dips can be independently tuned by altering the gating voltage applied on the corresponding graphene nanoribbon. Geometric parameters are investigated and optimized to obtain excellent sensing performance. Limit of detection is also evaluated in an approximation way. Besides, the biosensor can operate in a wide range of incident angles. Electric field intensity distributions are depicted to reveal the physical insight. Moreover, another biosensor based on periodic graphene nanodisks is further proposed, whose performance is insensitive to the polarization of incidence. Our research may have a potential for designing graphene-based biosensor used in many promising bioanalytical and pharmaceutical applications.


Nanophotonics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 823-832 ◽  
Author(s):  
Amir Ghobadi ◽  
Hodjat Hajian ◽  
Murat Gokbayrak ◽  
Bayram Butun ◽  
Ekmel Ozbay

AbstractIn recent years, sub-wavelength metamaterials-based light perfect absorbers have been the subject of many studies. The most frequently utilized absorber configuration is based on nanostructured plasmonic metals. However, two main drawbacks were raised for this design architecture. One is the fabrication complexity and large scale incompatibility of these nano units. The other one is the inherent limitation of these common metals which mostly operate in the visible frequency range. Recently, strong interference effects in lithography-free planar multilayer designs have been proposed as a solution for tackling these drawbacks. In this paper, we reveal the extraordinary potential of bismuth (Bi) metal in achieving light perfect absorption in a planar design through a broad wavelength regime. For this aim, we adopted a modeling approach based on the transfer matrix method (TMM) to find the ideal conditions for light perfect absorption. According to the findings of our modeling and numerical simulations, it was demonstrated that the use of Bi in the metal-insulator-metal-insulator (MIMI) configuration can simultaneously provide two distinct functionalities; a narrow near unity reflection response and an ultra-broadband near perfect absorption. The reflection behavior can be employed to realize additive color filters in the visible range, while the ultra-broadband absorption response of the design can fully harvest solar irradiation in the visible and near infrared (NIR) ranges. The findings of this paper demonstrate the extraordinary potential of Bi metal for the design of deep sub-wavelength optical devices.


Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 409 ◽  
Author(s):  
Naoki To ◽  
Saulius Juodkazis ◽  
Yoshiaki Nishijima

Realisation of a perfect absorber A = 1 with transmittance and reflectance T = R = 0 by a thin metasurface is one of the hot topics in recent nanophotonics prompted by energy harvesting and sensor applications ( A + R + T = 1 is the energy conservation). Here we tested the optical properties of over 400 structures of metal–insulator–metal (MIM) metasurfaces for a range of variation in thickness of insulator, diameter of a disc and intra-disc distance both experimentally and numerically. Conditions of a near perfect absorption A > 95 % with simultaneously occurring anti-reflection property ( R < 5 % ) was experimentally determined. Differences between the bulk vs. nano-thin film properties at mid-IR of the used materials can be of interest for plasmonic multi-metal alloys and high entropy metals.


Plasmonics ◽  
2017 ◽  
Vol 13 (3) ◽  
pp. 1043-1048 ◽  
Author(s):  
Li-Ping Sun ◽  
Xiang Zhai ◽  
Qi Lin ◽  
Gui-Dong Liu ◽  
Ling-Ling Wang

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Odysseas Tsilipakos ◽  
Angelos Xomalis ◽  
George Kenanakis ◽  
Maria Farsari ◽  
Costas M. Soukoulis ◽  
...  

Abstract A split-cube-resonator-based metamaterial structure that can act as a polarization- and direction-selective perfect absorber for the infrared region is theoretically and experimentally demonstrated. The structure, fabricated by direct laser writing and electroless silver plating, is comprised of four layers of conductively-coupled split-cube magnetic resonators, appropriately rotated to each other to bestow the desired electromagnetic properties. We show narrowband polarization-selective perfect absorption when the structure is illuminated from one side; the situation is reversed when illuminating from the other side, with the orthogonal linear polarization being absorbed. The absorption peak can be tuned in a wide frequency range by a sparser or denser arrangement of the split cube resonators, allowing to cover the entire atmospheric transparency window. The proposed metamaterial structure can find applications in polarization-selective thermal emission at the IR atmospheric transparency window for radiative cooling, in cost-effective infrared sensing devices, and in narrowband filters and linear polarizers in reflection mode.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dasol Lee ◽  
Myeongcheol Go ◽  
Minkyung Kim ◽  
Junho Jang ◽  
Chungryong Choi ◽  
...  

AbstractBroadband perfect absorbers have been intensively researched for decades because of their near-perfect absorption optical property that can be applied to diverse applications. Unfortunately, achieving large-scale and heat-tolerant absorbers has been remained challenging work because of costly and time-consuming lithography methods and thermolability of materials, respectively. Here, we demonstrate a thermally robust titanium nitride broadband absorber with >95% absorption efficiency in the visible and near-infrared region (400–900 nm). A relatively large-scale (2.5 cm × 2.5 cm) absorber device is fabricated by using a fabrication technique of multiple-patterning colloidal lithography. The optical properties of the absorber are still maintained even after heating at the temperatures >600 ∘C. Such a large-scale, heat-tolerant, and broadband near-perfect absorber will provide further useful applications in solar thermophotovoltaics, stealth, and absorption controlling in high-temperature conditions.


Sign in / Sign up

Export Citation Format

Share Document