scholarly journals A Low-Cost Soft Robotic Hand Exoskeleton for Use in Therapy of Limited Hand–Motor Function

2019 ◽  
Vol 9 (18) ◽  
pp. 3751 ◽  
Author(s):  
Grant Rudd ◽  
Liam Daly ◽  
Vukica Jovanovic ◽  
Filip Cuckov

We present the design and validation of a low-cost, customizable and 3D-printed anthropomorphic soft robotic hand exoskeleton for rehabilitation of hand injuries using remotely administered physical therapy regimens. The design builds upon previous work done on cable actuated exoskeleton designs by implementing the same kinematic functionality, but with the focus shifted to ease of assembly and cost effectiveness as to allow patients and physicians to manufacture and assemble the hardware necessary to implement treatment. The exoskeleton was constructed solely from 3D-printed and widely available off-the-shelf components. Control of the actuators was realized using an Arduino microcontroller, with a custom-designed shield to facilitate ease of wiring. Tests were conducted to verify that the range of motion of the digits and the forces exerted at the fingertip coincided with those of a healthy human hand.

This paper focuses on the design and development of Prosthetic hand to help differently-able people who lost their hands due to accidents and diseases. Our research purpose is to develop a master and slave robotic system that will be a substitute for the lost hand to do the day-to-day activities of a person. The person has to wear smart gloves in the hand to do gesture action. The gloves will able to transfer the hand gestures of differently-able people to react suitably and move the hand gripper (which contains spring coils similar to bones in human hand) based on the data from smart gloves. The methodology behind this research is that the analog signals produced in the flex sensor due to the gesture action are transferred to the servo motors to do a similar action in the 3D printed prosthetic hand through the Wi-Fi module. This research project involves two Arduino microcontrollers for communicating and controlling applications in both master and slave sections. A number of flex sensors are placed in the glove to get readings of the motion of human fingers and it is transmitted through the Wi-Fi module by using the Arduino microcontroller. The transmitted signals are received by the Wi-Fi module in the slave section through the Arduino microcontroller and further uses this signal to control various servo motors and it controls the slave robotic hand by using the ropes attached between the servo motor and 3D printed parts. Not only for differently-able people, but the enlarged model of this project can also be used in industries to handle hazardous, harmful, high temperatures and harmful things.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1470 ◽  
Author(s):  
Flaviu Ionuț Birouaș ◽  
Radu Cătălin Țarcă ◽  
Simona Dzitac ◽  
Ioan Dzitac

Robotic exoskeletons are a trending topic in both robotics and rehabilitation therapy. The research presented in this paper is a summary of robotic exoskeleton development and testing for a human hand, having application in motor rehabilitation treatment. The mechanical design of the robotic hand exoskeleton implements a novel asymmetric underactuated system and takes into consideration a number of advantages and disadvantages that arose in the literature in previous mechanical design, regarding hand exoskeleton design and also aspects related to the symmetric and asymmetric geometry and behavior of the biological hand. The technology used for the manufacturing and prototyping of the mechanical design is 3D printing. A comprehensive study of the exoskeleton has been done with and without the wearer’s hand in the exoskeleton, where multiple feedback sources are used to determine symmetric and asymmetric behaviors related to torque, position, trajectory, and laws of motion. Observations collected during the experimental testing proved to be valuable information in the field of augmenting the human body with robotic devices.


2019 ◽  
Vol 13 (3) ◽  
Author(s):  
Tomás A. Georgiou ◽  
Davide Asnaghi ◽  
Alva Liang ◽  
Alice M. Agogino

This paper describes the development and testing of a low-cost three-dimensional (3D) printed wearable hand exoskeleton to assist people with limited finger mobility and grip strength. The function of the presented orthosis is to support and enable light intensity activities of daily living and improve the ability to grasp and hold objects. The Sparthan Exoskeleton prototype utilizes a cable-driven design applied to individual digits with motors. The initial prototype is presented in this paper along with a preliminary evaluation of durability and performance efficacy.


2021 ◽  
Vol 15 ◽  
Author(s):  
Rommel S. Araujo ◽  
Camille R. Silva ◽  
Severino P. N. Netto ◽  
Edgard Morya ◽  
Fabricio L. Brasil

Stroke survivors can be affected by motor deficits in the hand. Robotic equipment associated with brain–machine interfaces (BMI) may aid the motor rehabilitation of these patients. BMIs involving orthotic control by motor imagery practices have been successful in restoring stroke patients' movements. However, there is still little acceptance of the robotic devices available, either by patients and clinicians, mainly because of the high costs involved. Motivated by this context, this work aims to design and construct the Hand Exoskeleton for Rehabilitation Objectives (HERO) to recover extension and flexion movements of the fingers. A three-dimensional (3D) printing technique in association with textiles was used to produce a lightweight and wearable device. 3D-printed actuators have also been designed to reduce equipment costs. The actuator transforms the torque of DC motors into linear force transmitted by Bowden cables to move the fingers passively. The exoskeleton was controlled by neuroelectric signal—electroencephalography (EEG). Concept tests were performed to evaluate control performance. A healthy volunteer was submitted to a training session with the exoskeleton, according to the Graz-BCI protocol. Ergonomy was evaluated with a two-dimensional (2D) tracking software and correlation analysis. HERO can be compared to ordinary clothing. The weight over the hand was around 102 g. The participant was able to control the exoskeleton with a classification accuracy of 91.5%. HERO project resulted in a lightweight, simple, portable, ergonomic, and low-cost device. Its use is not restricted to a clinical setting. Thus, users will be able to execute motor training with the HERO at hospitals, rehabilitation clinics, and at home, increasing the rehabilitation intervention time. This may support motor rehabilitation and improve stroke survivors life quality.


2019 ◽  
Vol 4 (10) ◽  
pp. 173-178
Author(s):  
André Silva ◽  
Samuel De Oliveira ◽  
Andreas Ries ◽  
Simplício A. Silva ◽  
Cícero Souto

This paper presents a robotic hand using wires with shape memory (NiTi) as non-conventional actuators. The mechanical structure of the robot hand was first designed by means of a CAD computer program and afterwards 3D printed using ABS polymer. The robotic hand was designed according to the physiological characteristics of the human hand, with particular attention to the angles formed by the phalanges of the fingers. A mechanical system accommodates the thin NiTi wires compactly, thus forming an artificial muscle. A fuzzy logic based control system allows an accurate positioning of each phalanx. The contribution of the present work to science lies in the practical implementation of known techniques and materials.


2021 ◽  
Vol 13 (2) ◽  
Author(s):  
Haosen Yang ◽  
Guowu Wei ◽  
Lei Ren ◽  
Zhihui Qian ◽  
Kunyang Wang ◽  
...  

Abstract This paper presents the design, analysis, and development of an anthropomorphic robotic hand coined MCR-hand II. This hand takes the advantages of both the tendon-driven and linkage-driven systems, leading to a compact mechanical structure that aims to imitate the mobility of a human hand. Based on the investigation of the human hand anatomical structure and the related existing robotic hands, mechanical design of the MCR-hand II is presented. Then, using D-H convention, kinematics of this hand is formulated and illustrated with numerical simulations. Furthermore, fingertip force is deduced and analyzed, and mechatronic system integration and control strategy are addressed. Subsequently, a prototype of the proposed robotic hand is developed, integrated with low-level control system, and following which empirical study is carried out, which demonstrates that the proposed hand is capable of implementing the grasp and manipulation of most of the objects used in daily life. In addition, the three widely used tools, i.e., the Kapandji score test, Cutkosky taxonomy, and Kamakura taxonomy, are used to evaluate the performance of the hand, which evidences that the MCR-hand II possesses high dexterity and excellent grasping capability; object manipulation performance is also demonstrated. This paper hence presents the design and development of a type of novel tendon–linkage-integrated anthropomorphic robotic hand, laying broader background for the development of low-cost robotic hands for both industrial and prosthetic use.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ke Li ◽  
Zhengzhen Li ◽  
Haibin Zeng ◽  
Na Wei

The human hand plays a role in a variety of daily activities. This intricate instrument is vulnerable to trauma or neuromuscular disorders. Wearable robotic exoskeletons are an advanced technology with the potential to remarkably promote the recovery of hand function. However, the still face persistent challenges in mechanical and functional integration, with real-time control of the multiactuators in accordance with the motion intentions of the user being a particular sticking point. In this study, we demonstrated a newly-designed wearable robotic hand exoskeleton with multijoints, more degrees of freedom (DOFs), and a larger range of motion (ROM). The exoskeleton hand comprises six linear actuators (two for the thumb and the other four for the fingers) and can realize both independent movements of each digit and coordinative movement involving multiple fingers for grasp and pinch. The kinematic parameters of the hand exoskeleton were analyzed by a motion capture system. The exoskeleton showed higher ROM of the proximal interphalangeal and distal interphalangeal joints compared with the other exoskeletons. Five classifiers including support vector machine (SVM), K-near neighbor (KNN), decision tree (DT), multilayer perceptron (MLP), and multichannel convolutional neural networks (multichannel CNN) were compared for the offline classification. The SVM and KNN had a higher accuracy than the others, reaching up to 99%. For the online classification, three out of the five subjects showed an accuracy of about 80%, and one subject showed an accuracy over 90%. These results suggest that the new wearable exoskeleton could facilitate hand rehabilitation for a larger ROM and higher dexterity and could be controlled according to the motion intention of the subjects.


Author(s):  
Christoph Wilms ◽  
Marisol Rodríguez-Ugarte ◽  
Eduarde Iañez ◽  
José M. Azorín
Keyword(s):  
Low Cost ◽  

2020 ◽  
Author(s):  
Rommel Soares de Araujo ◽  
Camille Reategui Silva ◽  
Severino Peixoto Nunes Netto ◽  
Edgard Morya ◽  
Fabricio Lima Brasil

Abstract Background: Stroke survivors can be affected by motor deficits in the hand. Robotic equipment associated with brain-machine interfaces (BMI) may aid the motor rehabilitation of these patients. BMIs involving orthotic control by motor imagery practices have been successful in restoring stroke patients' movements. However, there is still little acceptance of the robotic devices available, either by patients and clinicians, mainly because of the high costs involved. Motivated by this context, the present work aims to design and construct the Hand Exoskeleton for Rehabilitation Objectives (HERO) to recover extension and flexion movements of the fingers. Methods: 3D printing technique in association with textiles was used to produce a lightweight and wearable device. 3D-printed actuators have also been designed to reduce equipment costs. The actuator transforms the torque of DC motors into linear force transmitted by Bowden cables to move the fingers passively. The exoskeleton was controlled by neuroelectric signal --- electroencephalography (EEG). Concept tests were performed to evaluate control performance. A healthy volunteer was submitted to a training block with the exoskeleton, according to the Graz-BCI protocol. Ergonomy was evaluated with a 2D tracking software. Results: The outcome of the applied manufacturing technique was aesthetically pleasing. HERO's glove can be compared to ordinary clothing. The weight over the hand was around 102 g. The volunteer was able to control the exoskeleton with 91.5\% accuracy. Conclusions: HERO's project resulted in a lightweight, simple, portable, ergonomic, and low-cost device. Its use is not restricted to a clinical setting. Thus, users will be able to execute motor training with the HERO at hospitals, rehabilitation clinics, and home, increasing the rehabilitation intervention time. This may favor motor rehabilitation and improve the life quality of stroke survivors.


Sign in / Sign up

Export Citation Format

Share Document