scholarly journals A Bayesian Approach in the Evaluation of Unit Weight of Mineral and Organic Soils Based on Dilatometer Tests (DMT)

2019 ◽  
Vol 9 (18) ◽  
pp. 3779
Author(s):  
Rabarijoely

Recently, geotechnical problems that are characterized by a high degree of complexity and uncertainty with respect to input data have been solved using Bayesian analysis. One example is the problem of cautious estimation of geotechnical parameters according to Eurocode 7 requirements. The research included various types of soil such as peat, gyttja, organic mud, and clays. These were studied in order to develop an empirical correlation for determining the unit weight of mineral and organic soils. The compiled database of documented field research sites for different types of soil was used to investigate and develop direct relationships between measured results and dilatometer (DMT) readings, i.e., po and p1 together with pore water pressure (uo) and pressure (Pa). The soil unit weights were determined for both mineral and organic soils. The paper addresses the applicability of the Bayesian approach in geotechnics via a simple example related to the determination of characteristic values of geotechnical parameters for design structures. The results show that it is possible to conduct a more reliable forecast with improved statistical measures compared to other available methods for multilayer subsoils.

Author(s):  
M Zaki ◽  
Wardani SPR ◽  
Muhrozi Muhrozi

<p><em>Construction on soft soil, often creates problems. The Semarang North Ring Bridge and Kali Jajar Bridge are the Recent soft Marine Alluvium zones located in the Pantura area which have very soft soil characteristics with a depth of more than -30.0 meters this has resulted in a very large settlement due to very small grains, flood, rob, pore water pressure increases so that the shear strength of the soil will be small, the compression is large and the permeability coefficient is small so that if the construction load exceeds the critical bearing capacity, the damage to the foundation soil will occur. To get the increase in soil bearing capacity, it can be achieved by changing the properties of the soil from the shear angle (</em>f<em>), cohesion (c) and unit weight (</em>g<em>). The settlement can be reduced by increasing the cavity density from the compression of the soil particles (Wesley, 1977). Soil improvement takes a long time, aiming to increase shear resistance so that it requires a fast time in this case is to use Pre-Fabricated Vertical Drain (Bowles 1981). The results of the analysis of the pattern of decline and the effectiveness of the use of PVD (pre-fabricated vertical drain) at the Oprit Bridge in the two research locations have the same decrease in the range of the same heap height at (H = 4 meters) there is a decrease of 117.53 cm at 64 months on the bridge. Kali Jajar (STA. 3 + 200) and there was a decrease of 268.94 cm at 37 months at the Semarang North Ring Bridge</em></p>


Author(s):  
Edyta E. Malinowska ◽  
Alojzy Szymański

Abstract The paper is referring to vertical and horizontal laboratory permeability measurements in soft organic soils. The estimation of anisotropic permeability in soft organic soils, as peats, requires to use a special apparatus and the knowledge of proper analysis of the test results. During loading the void ratio decreases substantially that causes the changeability of the permeability. The change of permeability during the compression is very important because of the influence of the consolidation co-efficient. Initial strain in soft organic soils appears very quickly, just after loading, and brings immediately the decrease of permeability. In most of the estimations, it is assumed that during the consolidation process the water flows just in the vertical direction. In soft organic soils, like peats, the consolidation theory should consider the changes of mechanical and physical properties in consolidation period, in both directions. The direct measurement of vertical and horizontal permeability of organic soil and the non-Darcian flow theory may be of considerable importance in estimating pore water pressure dissipation, and settlement rates in the consolidation model. In the paper, the method of investigation and the test results of the vertical and horizontal permeability are presented. The Modified Rowe Cell Set for obtaining consolidation and flow characteristics in different directions is used.


Author(s):  
Simon Rabarijoely ◽  
Stanisław Jabłonowski ◽  
Kazimierz Garbulewski

Abstract BAYANAL code in geotechnical design based on Eurocode 7. Geotechnical problems that are characterized by a high degree of complexity and uncertainty with respect to the input data are solved recently, using the Bayesian analysis (for instance the problem of a cautious estimation of the geotechnical characteristic parameters according to the Eurocode 7 requirements). The applicability of the Bayesian approach to geotechnics via a simple examples related to determination of characteristic values of geotechnical parameters for design structures is in the paper addressed. In order to select the characteristic parameters for the geotechnical design a new numerical code called BAYANAL was developed. Example of applying the BAYANAL code to analyse the DMT tests demonstrates that it is a powerful and promising tool in evaluation of ground properties and geotechnical parameters.


2019 ◽  
Vol 8 (4) ◽  
pp. 7143-7147

The slippery of natural slope is sometimes ruled by combination of soil parameters and earthquake characteristics. Geotextiles could be a reinforcing materials and an application in numerous areas still as in geotechnical application to supply additional lateral restraint and forestall the high rise hill from failure. The analysis was aimed to analyze slope stability analysis, strengthened the Finite slope with non-woven geotextiles. The modal of hill was created within the SLOPE/W software system of GeoStudio that is predicated on limit equilibrium of slope analysis. The results of issue of safety square measure compared while not and with use of geotextiles in several layers. The issue of safety of slope failure will increase from three.437M to 9.978M victimization 3 layers of geotextiles at optimum height. Thus, this study confirms that the non-woven geotextiles may be applied in slope so as to enhance the soundness of natural or mam-made slope. During this regard, special stress is given to the sensitivity of the Calculation model input parameters like friction angle, cohesion, Pore water pressure and unit weight of soil that ought to contribute to raising awareness regarding these problems, as a requirement to create the proper selections and optimum technical resolution during this space.


2018 ◽  
Vol 8 (11) ◽  
pp. 2249 ◽  
Author(s):  
Simon Rabarijoely

In order to identify the soil type in the ground, Marchetti’s nomogram chart is commonly used on the basis of dilatometer tests (DMT). In this chart, the material index values (ID) and the dilatometer modulus (ED) are used to determine the state and type of soils predominant in mineral soils. Unfortunately, this classification is not accurate enough for the identification of organic soils. This article proposes a new classification based on a nomogram chart for both mineral soils and organic soils using (p0), (p1) readings and pore water pressure (uo).


Author(s):  
Hyunjun Oh ◽  
William J. Likos ◽  
Tuncer B. Edil

Poor drainage of roadway base/subbase materials can lead to increased pore water pressure, reduction of strength and stiffness, and freeze-thaw damage. Base course drainability is dependent on physical properties of the material that affect its water flow and retention behavior including particle size distribution, fines content, density or porosity, the geometric and boundary conditions of the pavement system, and site-specific environmental conditions. Objectives of this project are to quantitatively assess permeability and water retention characteristics of representative roadway base materials, to derive predictive equations for indirect estimation of material properties that control drainability, and to develop and recommend rating systems for assessing more general base materials. Laboratory tests were conducted on 16 samples of materials used in or considered for use in roadway applications to determine grain size distribution, hydraulic conductivity, and soil-water characteristic curves. Results are correlated to grain size characteristics including percent gravel, percent fines, grain size indices (e.g., D10, D30), and unit weight. Procedures are provided to qualitatively assess drainability as “excellent,”“marginal,” or “poor,” from grain size, thereby offering a rationale to reduce pavement life cycle costs, improve safety, realize material cost savings, and reduce environmental impacts.


Author(s):  
Trần Thanh Nhàn

In order to observe the end of primary consolidation (EOP) of cohesive soils with and without subjecting to cyclic loading, reconstituted specimens of clayey soils at various Atterberg’s limits were used for oedometer test at different loading increments and undrained cyclic shear test followed by drainage with various cyclic shear directions and a wide range of shear strain amplitudes. The pore water pressure and settlement of the soils were measured with time and the time to EOP was then determined by different methods. It is shown from observed results that the time to EOP determined by 3-t method agrees well with the time required for full dissipation of the pore water pressure and being considerably larger than those determined by Log Time method. These observations were then further evaluated in connection with effects of the Atterberg’s limit and the cyclic loading history.


Sign in / Sign up

Export Citation Format

Share Document