scholarly journals Experimental and CFD Simulation Studies on Bell-Type Air Nozzles of CFB Boilers

2019 ◽  
Vol 9 (18) ◽  
pp. 3805
Author(s):  
Zhong Huang ◽  
Lei Deng ◽  
Defu Che

In this paper, a new bell-type air nozzle, which overcomes the structural defects of traditional bell-type air nozzles, is proposed and validated by cold test and numerical simulation. The pressure drop characteristic of the new bell-type air nozzle is measured. Furthermore, the causes of cover outlet abrasion and blockage, inner tube fracture, and irregular resistance change in traditional bell-type air nozzles applied in circulating fluidized bed (CFB) boilers are analyzed. Then, the performance of the new bell-type air nozzle is evaluated in a real CFB boiler, which is operated under regular working conditions. The results show that the new bell-type air nozzle has stronger anti-wear ability, excellent resistance characteristics, longer service life, and easier maintenance.

TAPPI Journal ◽  
2010 ◽  
Vol 9 (6) ◽  
pp. 24-30 ◽  
Author(s):  
NIKLAS BERGLIN ◽  
PER TOMANI ◽  
HASSAN SALMAN ◽  
SOLVIE HERSTAD SVÄRD ◽  
LARS-ERIK ÅMAND

Processes have been developed to produce a solid biofuel with high energy density and low ash content from kraft lignin precipitated from black liquor. Pilot-scale tests of the lignin biofuel were carried out with a 150 kW powder burner and a 12 MW circulating fluidized bed (CFB) boiler. Lignin powder could be fired in a powder burner with good combustion performance after some trimming of the air flows to reduce swirl. Lignin dried to 10% moisture content was easy to feed smoothly and had less bridging tendencies in the feeding system than did wood/bark powder. In the CFB boiler, lignin was easily handled and cofired together with bark. Although the filter cake was broken into smaller pieces and fines, the combustion was not disturbed. When cofiring lignin with bark, the sulfur emission increased compared with bark firing only, but most of the sulfur was captured by calcium in the bark ash. Conventional sulfur capture also occurred with addition of limestone to the bed. The sulfur content in the lignin had a significantly positive effect on reducing the alkali chloride content in the deposits, thus reducing the high temperature corrosion risk.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1092
Author(s):  
Hengli Zhang ◽  
Chunjiang Yu ◽  
Zhongyang Luo ◽  
Yu’an Li

The circulating fluidized bed (CFB) boiler is a mainstream technology of biomass combustion generation in China. The high flue gas flow rate and relatively low combustion temperature of CFB make the deposition process different from that of a grate furnace. The dynamic deposition process of biomass ash needs further research, especially in industrial CFB boilers. In this study, a temperature-controlled ash deposit probe was used to sample the deposits in a 12 MW CFB boiler. Through the analysis of multiple deposit samples with different deposition times, the changes in micromorphology and chemical composition of the deposits in each deposition stage can be observed more distinctively. The initial deposits mainly consist of particles smaller than 2 μm, caused by thermophoretic deposition. The second stage is the condensation of alkali metal. Different from the condensation of KCl reported by most previous literatures, KOH is found in deposits in place of KCl. Then, it reacts with SO2, O2 and H2O to form K2SO4. In the third stage, the higher outer layer temperature of deposits reduces the condensation rate of KOH significantly. Meanwhile, the rougher surface of deposits allowed more calcium salts in fly ash to deposit through inertial impact. Thus, the elemental composition of deposits surface shows an overall trend of K decreasing and Ca increasing.


Optik ◽  
2021 ◽  
Vol 231 ◽  
pp. 166417 ◽  
Author(s):  
Md Tohidul Islam ◽  
Md Rafsun Jani ◽  
Kazi Md Shorowordi ◽  
Zameer Hoque ◽  
Ali Mucteba Gokcek ◽  
...  

Author(s):  
Pengju Huo ◽  
Xiaohong Li ◽  
Yang Liu ◽  
Haiying Qi

AbstractThe influences of loose gas on gas-solid flows in a large-scale circulating fluidized bed (CFB) gasification reactor were investigated using full-loop numerical simulation. The two-fluid model was coupled with the QC-energy minimization in multi-scale theory (EMMS) gas-solid drag model to simulate the fluidization in the CFB reactor. Effects of the loose gas flow rate, Q, on the solid mass circulation rate and the cyclone separation efficiency were analyzed. The study found different effects depending on Q: First, the particles in the loop seal and the standpipe tended to become more densely packed with decreasing loose gas flow rate, leading to the reduction in the overall circulation rate. The minimum Q that can affect the solid mass circulation rate is about 2.5% of the fluidized gas flow rate. Second, the sealing gas capability of the particles is enhanced as the loose gas flow rate decreases, which reduces the gas leakage into the cyclones and improves their separation efficiency. The best loose gas flow rates are equal to 2.5% of the fluidized gas flow rate at the various supply positions. In addition, the cyclone separation efficiency is correlated with the gas leakage to predict the separation efficiency during industrial operation.


Author(s):  
Matteo Bruzzone ◽  
Silvia Ravelli

It is well known that the Łagisza power plant in Poland is the world’s first supercritical circulating fluidized bed (CFB) boiler, whose commercial operation started on June 2009. It has attracted a great deal of interest and operational data are publicly available, therefore it has been chosen as the object of the present study aimed at assessing load and fuel flexibility of supercritical CFB plants. First, the thermal cycle was modelled, by means of the commercial code Thermoflex®, at nominal and part load conditions for validation purposes. After having verified the validity of the applied modelling and simulation tool, the advantage of having supercritical steam combined with CFB boiler over subcritical steam and pulverized coal (PC) boiler, respectively, was quantified in terms of electric efficiency. As a next step, the designed fuel, i.e. locally mined hard coal, was replaced with biomass: 100% biomass firing was taken into account in the case of subcritical CFB boiler whereas the maximum share of biomass with coal was set at 50% with supercritical CFB boiler, consistently with the guidelines provided by the world leading manufacturers of CFB units. A broad range of biomass types was tested to conceive mixtures of fuel capable of preserving quite high performance, despite the energy consumption in pretreatment. However, the overall efficiency penalty, due to biomass co-firing, was found to potentially undermine the benefit of supercritical steam conditions compared to conventional subcritical power cycles. Indeed, the use of low-quality biomass in thermal power generation based on steam Rankine cycle may frustrate efforts to push the steam cycle boundaries.


2020 ◽  
Vol 310 ◽  
pp. 00039
Author(s):  
Kamila Kotrasova ◽  
Vladimira Michalcova

The numerical simulation of flow process and heat transfer phenomena demands the solution of continuous differential equation and energy-conservation equations coupled with the continuity equation. The choosing of computation parameters in numerical simulation of computation domain have influence on accuracy of obtained results. The choose parameters, as mesh density, mesh type and computation procedures, for the numerical diffusion of computation domain were analysed and compared. The CFD simulation in ANSYS – Fluent was used for numerical simulation of 3D stational temperature flow of the computation domain.


Sign in / Sign up

Export Citation Format

Share Document