scholarly journals An Investigation on Base Metal Block Shear Strength of Ferritic Stainless Steel Welded Connection

2019 ◽  
Vol 9 (20) ◽  
pp. 4220 ◽  
Author(s):  
SimChul Yuk ◽  
WooRam An ◽  
BoKyung Hwang ◽  
TaeSoo Kim

This study develops a finite element analysis model to predict the ultimate strength of the base metal block shear fracture based on previous experimental results and compares the experimental results with the analysis results to verify the effectiveness of the analysis model. This study also analyzed additional variables of the welding direction and weld length on the applied load to investigate the structural behaviors and fracture conditions. In addition, predicted strength according to the analysis results were compared with those by the current design equations, and the equations proposed by previous researchers. As a result, the design formula by the current design equations, such as Korea Building Code (KBC)/American Institute of Steel Construction (AISC) and European Code (EC3), and the equations proposed by Oosterhof and Driver underestimated the base metal block shear strength of ferritic stainless steel by up to 42%. Equations suggested by Topkaya and Lee et al. for carbon steel and austenitic stainless steel welded connections provided more accurate strength predictions, while they did not reflect the difference of material properties. Therefore, this study proposed a modified strength equation for ferritic stainless steel welded connection with base metal block shear fracture considering the stress triaxiality effect of the welded connection and the material properties of ferritic stainless steel.

2019 ◽  
Vol 23 (6) ◽  
pp. 1209-1223 ◽  
Author(s):  
TaeSoo Kim ◽  
BoKyung Hwang ◽  
YoungChul Lim

This article presents the experimental and numerical results of cold-formed ferritic stainless steel (STS430) bolted connection with two bolts. Single-shear bolted connections with varying end distance were planned and tested. Block shear fracture and curling (out-of-plane deformation) were observed in specimens. Finite element analysis was performed to investigate the conditions for curling occurrence and the curling effect on the ultimate strength of ferritic stainless steel bolted connections with extended end distances and edge distances varying from 24 to 60 mm. Curling occurred for bolted connections with end distances exceeding 39 mm and edge distances exceeding 30 mm. Ultimate strength of curled specimens was reduced up to 33% compared to the ultimate strength of uncurled connection. Since current design equations do not consider the curling effect and the difference in material properties, they did not provide accurate ultimate strength predictions of specimens with typical block shear fracture and curling occurrence. Therefore, a modified block shear equation was suggested for ferritic stainless steel bolted connection with typical block shear fracture mode, considering the actual fracture path and shear stress factor. A revised equation was also proposed for specimens with strength reduction by curling influence, considering the concepts of bearing action against connected plate by bolt (bearing factor, C = 1.6) and net-section tensile fracture between two bolts perpendicular to the direction of the applied force. Moreover, additional experiments for six specimens were performed and the reliability of the two suggested equations in this study was verified.


2020 ◽  
Author(s):  
Andreas Jobst

During the manufacturing of semi-finished products, the material is subjected to various forming steps to achieve the final geometry. In order to reduce the work hardening introduced and to ensure a good formability, it is annealed before component manufacturing. Forming technologies like forward rod extrusion are well-established methods for an efficient production of resilient components. In this process however, an inhomogeneous pre-strengthening of the material influences the stress distribution during forming and therefore the mechanical properties and the residual stresses in the component. Since they affect the parts operating behaviour, knowledge of the influence of the delivery condition of the material is necessary. The aim in this paper is to derive dependencies between material properties and the resulting residual stresses and work hardening in the component. Due to the increasing application, ferritic stainless steel X6Cr17 in the skin passed (+LC) and soft annealed (+A) states is used. Residual stresses, microstructure and microhardness distribution of both material states are compared regarding the rods and extruded parts. The effects of the delivery condition are evaluated by comparing process and component properties.


2011 ◽  
Vol 255-260 ◽  
pp. 74-78 ◽  
Author(s):  
Tae Soo Kim ◽  
Min Seong Kim ◽  
S.H. Kim ◽  
Y.T. Lee ◽  
S.W. Shin

The introduction of thin-walled stainless steel in buildings has been increased gradually for ensuring the sustainability thanks to excellent corrosion resistance and durability. Many studies on structural behaviors of stainless steel bolted connection fabricated with plane plate have been carried out. This paper is aimed at investigating the ultimate behaviors such as ultimate strength, fracture mode and out of plane deformation(i.e. curling) of channel bolted connection of cold-formed austenitic stainless steel with four bolts (2×2 bolt arrangement). End distance parallel to the direction of applied force is adopted as main variables. Specimens are planned with block shear fracture in ultimate state. In case of bolted connections with a long end distance, curling has also been observed. Ultimate strengths by test results are compared with those of current ASCE design specification and the influence of curling on ultimate strength is discussed.


Sign in / Sign up

Export Citation Format

Share Document