scholarly journals Wind-Induced Response Control of High-Rise Buildings Using Inerter-Based Vibration Absorbers

2019 ◽  
Vol 9 (23) ◽  
pp. 5045 ◽  
Author(s):  
Qinhua Wang ◽  
Haoshuai Qiao ◽  
Dario De Domenico ◽  
Zhiwen Zhu ◽  
Zhuangning Xie

The beneficial mass-amplification effect induced by the inerter can be conveniently used in enhanced variants of the traditional Tuned Mass Damper (TMD), namely the Tuned Mass-Damper-Inerter (TMDI) and its special case of Tuned Inerter Damper (TID). In this paper, these inerter-based vibration absorbers are studied for mitigating the wind-induced response of high-rise buildings, with particular emphasis on a 340 m tall building analyzed as case study. To adopt a realistic wind-excitation model, the analysis is based on aerodynamic forces computed through experimental wind tunnel tests for a scaled prototype of the benchmark building, which accounts for the actual cross-section of the structure and the existing surrounding conditions. Mass and stiffness parameters are extracted from the finite element model of the primary structure. Performance-based optimization of the TMDI and the TID is carried out to find a good trade-off between displacement- and acceleration-response mitigation, with the installation floor being an explicit design variable in addition to frequency and damping ratio. The results corresponding to 24 different wind directions indicate that the best vibration mitigation is achieved with a lower installation floor of the TMDI/TID scheme than the topmost floor. The effects of different parameters of TMD, TMDI and TID on wind-induced displacement and acceleration responses and on the equivalent static wind loads (ESWLs) are comparatively evaluated. It is shown that the optimally designed TMDI/TID can achieve better wind-induced vibration mitigation than the TMD while allocating lower or null attached mass, especially in terms of acceleration response.

Author(s):  
S Pourzeynali ◽  
S Salimi

In engineering applications, many control devices have been developed to reduce the vibrations of structures. Active tuned mass damper system is one of these devices, which is a combination of a passive tuned mass damper system and an actuator to produce a control force. The main objective of this paper is to present a practical procedure for both deterministic and probabilistic design of the active tuned mass damper control system using multi-objective genetic algorithms to mitigate high-rise building responses. For this purpose, extensive numerical analyses have been performed, and optimal robust results of the active tuned mass damper design parameters with their effectiveness in reducing the example building responses have been presented. Uncertainties, which may exist in the system, have been taken into account using a robust design optimization procedure. The stiffness matrix and damping ratio of the building are considered as uncertain random variables; and using the well-known beta distribution, 50 pairs of these variables are generated. This resulted in 50 buildings with different stiffness matrices and damping ratios. These simulated buildings are used to evaluate robust optimal values of the active tuned mass damper design parameters. Four non-commensurable objective functions, namely maximum displacement, maximum velocity, maximum acceleration of each floor of the building, and active control force produced by the actuator are considered, and a fast and elitist non-dominated sorting genetic algorithm approach is used to find a set of pareto-optimal solutions.


Author(s):  
Duy-Chinh Nguyen

In this paper, an analytical method is presented to determine the optimal parameters of the symmetric tuned mass damper, such as the ratio between natural frequency of tuned mass damper and shaft (tuning ratio) and the ratio of the viscous coefficient of tuned mass damper (damping ratio). The optimal parameters of tuned mass damper are applied to reduce the torsional vibration of the shaft based on consideration of the vibration duration and stability criterion. The dynamic equations of the shaft are provided via Lagrangian equations, and the optimal parameters of tuned mass damper are derived by using the principle of minimum kinetic energy. Analytical and numerical examples are implemented to verify the reliability of the proposed method. The analytical and numerical results indicate that the optimal parameters of tuned mass damper have significant effects in the torsional vibration reduction of the shaft.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Huaguo Gao ◽  
Congbao Wang ◽  
Chen Huang ◽  
Wenlong Shi ◽  
Linsheng Huo

The tuned mass damper (TMD) can be applied to suppress earthquake, wind, and pedestrian- and machine-induced vibration in factory buildings or large span structures. However, the traditional TMD with a fixed frequency will not be able to perform effectively against the frequency variations in multiple hazards. This paper proposed a frequency-adjustable tuned mass damper (FATMD) to solve this limitation of current TMD. The FATMD presented in this paper is composed of a simple assembly consisting of a supported beam with a mass, in which the frequency of the FATMD is changed by adjusting the span of the beam. The kinematic equation of a single degree of freedom (SDOF) structure installed with an FATMD is established to analyze the effect of the damping ratio, mass ratio, and stiffness on the vibration damping. The fundamental frequency of the FATMD at different spans is verified by simulation and experiments. Forced vibration experiments with different excitation frequencies are also conducted to verify the performance of the FATMD. The results show that the proposed FATMD can effectively suppress the vertical vibration of structures at different excitation frequencies, including frequencies at a range higher than what a traditional TMD may not be able to suppress. Additionally, the proposed FATMD is applied to a long-span pedestrian bridge which vibrates frequently due to the walking of pedestrians, the running of escalators, and earthquakes. The numerical results indicate that the FATMD can effectively reduce the vertical vibration of the pedestrian bridge under the excitations of pedestrians, escalators, and earthquakes.


2019 ◽  
Vol 19 (06) ◽  
pp. 1950056 ◽  
Author(s):  
Li Tian ◽  
Kunjie Rong ◽  
Kaiming Bi ◽  
Peng Zhang

Failures of transmission tower-line systems have frequently occurred during large earthquakes. It is essential to control the excessive vibrations of transmission tower-line systems to ensure their safe operation in such events. This paper numerically investigates the effectiveness of using a novel bidirectional pounding tuned mass damper (BPTMD) to control the seismic responses of transmission tower-line system when subjected to earthquake ground motions. A finite element model of a typical transmission tower-line system with BPTMD is developed using the commercial software ABAQUS, with the accuracy of the results verified against a previous study. The seismic responses of the system with and without BPTMD are calculated. For comparison, the control effect of using the conventional bidirectional tuned mass damper is also calculated and discussed. Finally, a parametric study is performed to investigate the effects of the mass ratio, seismic intensity, gap size and frequency ratio on the seismic response of the system, while optimal design parameters are obtained.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3319 ◽  
Author(s):  
Jijian Lian ◽  
Yue Zhao ◽  
Chong Lian ◽  
Haijun Wang ◽  
Xiaofeng Dong ◽  
...  

Offshore wind turbine (OWT) structures are highly sensitive to complex ambient excitations, especially extreme winds. To mitigate the vibrations of OWT structures under windstorm or typhoon conditions, a new eddy current with tuned mass damper (EC-TMD) system that combines the advantages of the eddy current damper and the tuned mass damper is proposed to install at the top of them. In the present study, the electromagnetic theory is applied to estimate the damping feature of the eddy current within the EC-TMD system. Then, the effectiveness of the EC-TMD system for vibration mitigation is demonstrated by small-scale tests. Furthermore, the EC-TMD system is used to alleviate structural vibrations of the OWT supported by composite bucket foundations (CBF) under extreme winds at the Xiangshui Wind Farm of China. It is found that the damping of the EC-TMD system can be ideally treated as having linear viscous damping characteristics, which are influenced by the gaps between the permanent magnets and the conductive materials as well as the permanent magnet layouts. Meanwhile, the RMS values of displacements of the OWT structure can be mitigated by 16% to 28%, and the acceleration can also be reduced significantly. Therefore, the excellent vibration-reducing performance of the EC-TMD system is confirmed, which provides meaningful guidance for application in the practical engineering of OWTs.


2015 ◽  
Vol 104 (4) ◽  
pp. 1-8 ◽  
Author(s):  
Tomoki Yaguchi ◽  
Haruhiko Kurino ◽  
Naoki Kano ◽  
Takeshi Nakai ◽  
Ryusuke Fukuda

Sign in / Sign up

Export Citation Format

Share Document