scholarly journals Vehicle Cornering Performance Evaluation and Enhancement Based on CAE and Experimental Analyses

2019 ◽  
Vol 9 (24) ◽  
pp. 5428
Author(s):  
Hsing-Hui Huang ◽  
Ming-Jiang Tsai

A full-vehicle analysis model was constructed incorporating a SLA (Short Long Arm) strut front suspension system and a multi-link rear suspension system. CAE (Computer Aided Engineering) simulations were then performed to investigate the lateral acceleration, yaw rate, roll rate, and steering wheel angle of the vehicle during constant radius cornering tests. The validity of the simulation results was confirmed by comparing the computed value of the understeer coefficient (Kus) with the experimental value. The validated model was then used to investigate the steady-state cornering performance of the vehicle (i.e., the roll gradient and yaw rate gain) at various speeds. The transient response of the vehicle was then examined by means of simulated impulse steering tests. The simulation results were confirmed by comparing the calculated values of the phase lag, natural frequency, yaw rate gain rate, and damping ratio at various speeds with the experimental results. A final series of experiments was then performed to evaluate the relative effects of the cornering stiffness, initial toe-in angle, and initial camber angle on the steady-state and transient-state full-vehicle cornering handling performance. The results show that the handling performance can be improved by increasing the cornering stiffness and initial toe-in angle or reducing the initial camber angle.

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Yilin He ◽  
Jian Ma ◽  
Xuan Zhao ◽  
Ruoyang Song ◽  
Xiaodong Liu ◽  
...  

Aiming at improving the tracking stability performance for intelligent electric vehicles, a novel stability coordinated control strategy based on preview characteristics is proposed in this paper. Firstly, the traditional stability control target is introduced with the two degrees of freedom model, which is realized by the sliding mode control strategy. Secondly, an auxiliary control target further amending the former one with the innovation formulation of the preview characteristics is established. At last, a multiple purpose Vague set leverages the contribution of the traditional target and the auxiliary preview target in various vehicle states. The proposed coordinated control strategy is analyzed on the MATLAB/CarSim simulation platform and verified on an intelligent electric vehicle established with A&D5435 rapid prototyping experiment platform. Simulation and experimental results indicate that the proposed control strategy based on preview characteristics can effectively improve the tracking stability performance of intelligent electric vehicles. In the double lane change simulation, the peak value of sideslip angle, yaw rate, and lateral acceleration of the vehicle is reduced by 13.2%, 11.4%, and 8.9% compared with traditional control strategy. The average deviations between the experimental and simulation results of yaw rate, lateral acceleration, and steering wheel angle are less than 10% at different speeds, which demonstrates the consistency between the experimental and the simulation results.


2019 ◽  
Vol 9 (24) ◽  
pp. 5328 ◽  
Author(s):  
Diwakar Harsh ◽  
Barys Shyrokau

Formula Society of Automotive Engineers (SAE) (FSAE) is a student design competition organized by SAE International (previously known as the Society of Automotive Engineers, SAE). Commonly, the student team performs a lap simulation as a point mass, bicycle or planar model of vehicle dynamics allow for the design of a top-level concept of the FSAE vehicle. However, to design different FSAE components, a full vehicle simulation is required including a comprehensive tire model. In the proposed study, the different tires of a FSAE vehicle were tested at a track to parametrize the tire based on the empirical approach commonly known as the magic formula. A thermal tire model was proposed to describe the tread, carcass, and inflation gas temperatures. The magic formula was modified to incorporate the temperature effect on the force capability of a FSAE tire to achieve higher accuracy in the simulation environment. Considering the model validation, the several maneuvers, typical for FSAE competitions, were performed. A skidpad and full lap maneuvers were chosen to simulate steady-state and transient behavior of the FSAE vehicle. The full vehicle simulation results demonstrated a high correlation to the measurement data for steady-state maneuvers and limited accuracy in highly dynamic driving. In addition, the results show that neglecting temperature in the tire model results in higher root mean square error (RMSE) of lateral acceleration and yaw rate.


2021 ◽  
Vol 23 (3) ◽  
pp. 405-412
Author(s):  
Andrzej Gajek ◽  
Adam Kot ◽  
Piotr Strzępek

The paper presents the proposals of extension of the periodic tests of the selected ESP system sensors: angular velocity sensor and lateral acceleration sensor using a universal diagnostics tester and a plate stand (a wheel play detector unit). The idea of this approach is to evaluate the signals from the above sensors in terms of their amplitude and frequency in the case of known forcing at the plate stand. Knowledge of the amplitude and frequency of the plates excitation and the model of tested vehicle allows for predicting the response of vehicle. On this way the verification of sensors indications is possible. This article presents the flat model of a vehicle placed on the plate stand, simulation tests and the results of its validation for three different vehicles. The results of the investigation show that the wheelbase of vehicle has a significant impact on the steady-state vibration amplitude. This conclusion is important in the practical application of this method to test the vehicle yaw rate sensor in the ESP system.


Author(s):  
Qijia Liu ◽  
Nong Zhang ◽  
Fuyong Feng ◽  
Min Zhou

This paper focuses on the contribution of a hydraulically interconnected suspension on the handling performance of a tractor-semitrailer. A hydraulically interconnected suspension model is integrated with a traditional tractor-semitrailer suspension for the purpose of study, and the hydraulically interconnected suspension system is first investigated through the bench test simulation to study its nonlinear and damping characteristic. Then a static rollover test, a steady-state circular test, a pulse steer input test, a pulse road input test and a random road input test are simulated in order to fully investigate the performance of a tractor-semitrailer with hydraulically interconnected suspension. The comparison analyses are conducted among two vehicles which are a fully loaded tractor-semitrailer without hydraulically interconnected suspension, an unloaded tractor-semitrailer without hydraulically interconnected suspension, a fully loaded tractor-semitrailer with hydraulically interconnected suspension and an unloaded tractor-semitrailer with hydraulically interconnected suspension. The obtained results show that the fully loaded tractor-semitrailer has enhanced handling performance, an improved steady-state rollover threshold and unchanged ride performance with the assistance of hydraulically interconnected suspension.


2013 ◽  
Vol 347-350 ◽  
pp. 899-903
Author(s):  
Yi He Gan ◽  
Lu Xiong ◽  
Yuan Feng ◽  
Felix Martinez

This paper studies the improvement of the handling performance of 4WD EV driven by in-wheel motors under regular driving conditions. Fundamentally the structure of torque vectoring control (TVC) system for handling control consists of two control layers. The upper layer is a model following controller which makes the vehicle follow the desired yaw rate limited by the side slip angle and lateral acceleration. The torque distribution constitutes the lower layer. Several simulations based on veDYNA/Simulink are conducted to verify the effectiveness of the control system. It is clarified that the control system exhibits satisfactory performance in both open and closed loop maneuvers and the agility of the electric vehicle is improved.


Author(s):  
Indrasen Karogal ◽  
Beshah Ayalew ◽  
E. Harry Law

In this paper, we present an iterative approach for analyzing the steady state handling behavior of a two-axled vehicle. This approach computes lateral forces iteratively from two separate submodels. The first submodel is an appropriate tire model that computes per wheel lateral forces as functions of slip angles, from formulations preferably expressed in a non-dimensional format. The second is a lateral weight transfer submodel that computes per-axle lateral force contributions for a given lateral acceleration. The combination then allows for the estimation of the required steer angles for the prevailing lateral acceleration. Subsequent corrections are then applied to take into account steer effects such as roll steer, lateral force compliance steer and aligning moment compliance steer. The usefulness of the approach is demonstrated by comparing simulation results with test data for a small passenger car.


2019 ◽  
Vol 41 (16) ◽  
pp. 4545-4568
Author(s):  
Basim Altork ◽  
Hakan Yazici

In this paper, a three-degree-of freedom (3 DOF) integrated vehicle lateral, yaw, roll dynamics model with optimal control design have been proposed to improve the bus lateral stability and handling performance. First, a 3 DOF vehicle model for a passenger bus is introduced. The 3 DOF model dynamics include the vehicle steering wheel angle, forward speed, yaw motion, sideslip angle, lateral acceleration and the rolling motion. Then, the presented 3 DOF model is used to design the robust static output feedback [Formula: see text] controller for both nominal system and uncertain system. The proposed controller is designed to improve the bus lateral stability and handling performance by controlling the yaw rate during normal driving and maneuvers. For the robust static output feedback [Formula: see text] controller, the norm bounded uncertainty is considered to simulate the variation of vehicle forward velocity uncertainty. The robust controller is designed to check the lateral stability of the bus at different forward velocity and at different velocity uncertainty. The controllers are synthesized within the [Formula: see text] control approach and the controllers’ design conditions are given within the Linear Matrix Inequalities (LMIs) framework. Numerical simulations have been carried out to demonstrate the effectiveness of the proposed controllers. The obtained simulation results show that the designed nominal and robust controllers enhance the lateral stability of the bus by reducing the amplitude of the yaw rate, lateral acceleration and rolling motion. Hence, the improvements in bus lateral stability and handling performance are achieved.


Author(s):  
Hossam Ragheb ◽  
Moustafa El-Gindy ◽  
Hossam Kishawy

Multi-wheeled combat vehicles behavior depends not only on the available total driving torque but also on its distribution among the drive axles/wheels. In turn, this distribution is largely regulated by the drivetrain layout and its torque distribution devices. In this paper, a multi-wheeled (8×4) combat vehicle bicycle model has been developed and used to obtain the desired yaw rate and lateral acceleration to become reference for the design of the controllers. PID controllers were designed as upper and lower layers of the controllers. The upper controller develops the corrective yaw moment, which is the input to the lower controller to manage the independent torque distribution (torque vectoring) among the driving wheels. Several simulation maneuvers have been performed at different vehicle speeds using Matlab/Simulink-TruckSim to investigate the proposed torque vectoring control strategy. The simulation results with the proposed controller showed a significant improvement over conventional driveline, especially at severe maneuvers.


Author(s):  
K Huh ◽  
J Kim ◽  
J Hong

Handling performance of six-wheeled special-purpose vehicles is investigated in this study. Six-wheel drive (6WD) vehicles are believed to have good performance in off-the-road manoeuvring and to have fail-safe capabilities when one or two of their tyres are blown. However, the handling performance of six-wheel steering (6WS) vehicles is not yet well understood in the relevant literature. In this paper, six-wheeled vehicles are modelled as an 18 degree-of-freedom (DOF) system that considers non-linear vehicle dynamics, tyre models and kinematic effects. The vehicle model is constructed into a simulation tool using MATLAB/SIMULINK so that input/output and vehicle parameters can be changed easily using the modulated approach. Handling performance is analysed not only from the frequency domain but also from the time domain. Simulation results demonstrate that the effect of middle-wheel steering is not negligible from the viewpoint of handling characteristics such as yaw rate, lateral acceleration, etc. The simulation tool is also utilized for the manoeuvring analysis over a rough rigid surface, where the separation between the wheels and the road can be considered. In addition, a new 6WS control law is proposed in order to minimize the sideslip angle. Lane change simulation results show the advantage of 6WS vehicles with the proposed control law.


Author(s):  
Paul T. Semones ◽  
H. Alex Roberts ◽  
David A. Renfroe

EI Consultants (formerly The Engineering Institute) has been studying solid rear axle tramp for well over a decade, and contributed several publications to the literature outlining recommended test methods and their results. Throughout the history of EI’s research, sustained tramp inputs have been achieved by use of a tire featuring affixed lumps of rubber to induce wheel hop at one end of the axle. The principal methodological guide for studying the vehicle response to this input has been the test methods and data analysis recommendations of test standard SAE J266: Steady-State Directional Control Characteristics for Passenger Cars and Light Trucks. More specifically, past testing has been patterned almost exclusively on the circle test (constant-radius/slowly-increasing-speed) method discussed in J266. Historically, the J266 recommendation for data analysis and presentation, i.e. understeer/oversteer gradients derived from a wheel angle versus lateral acceleration plot, were principally used. Recent research, along with fresh analysis of previous testing results, revealed limitations of the circle test and the J266 recommended manner of data analysis in the context of tramp resonance testing. During a constant-radius/slowly-increasing-speed test, a single control variable (speed) has the effect of changing both the lateral acceleration and the tramp input frequency simultaneously. This effect results in a non-steady-state test event where only a narrow portion of each test run expresses the resonant axle tramp phenomenon that is the intended object of the observation. To provide a wider view of vehicle response characteristics during sustained axle tramp, EI Consultants selected and evaluated expanded test methods in a recent testing project. These methods included performing circle tests at multiple radii, performing continuous tests modeled after the J266 constant-speed/variable-radius method, and performing path-following tests modeled after the slowly increasing steer method. Expanded data analysis and presentation methods were developed to quantify and understand the vehicle oversteer response in more effective ways than those recommended by J266. Due to the abrupt discontinuity in the vehicle’s response upon reaching the resonant tramp frequency, novel methods of data presentation were shown to be more useful in assessing vehicle characteristics during resonant tramp. Of particular value was examining the steering input delta in the vehicle speed and tramp input frequency domains during the phase of resonant axle response; and examining the difference between the actual yaw rate and the theoretical Ackerman yaw rate derived from the measured steer angle. This paper will detail the data analysis techniques that were developed to overcome the limitations of the J266 standard’s steer gradient methodology, and thus introduce a more useful approach to evaluating understeer/oversteer characteristics during non-steady-state test events. This paper is the first of two companion papers presenting theory and results from EI Consultants’ most recent axle tramp testing. This paper focuses on new understandings of test data analysis theory, while the second paper will summarize the results of numerous tests and their application to various suspension design strategies for improving solid rear axle tramp control, with a motivation for enhancing vehicle controllability and highway safety.


Sign in / Sign up

Export Citation Format

Share Document