Torque Distribution Control for Multi-Wheeled Combat Vehicle

Author(s):  
Hossam Ragheb ◽  
Moustafa El-Gindy ◽  
Hossam Kishawy

Multi-wheeled combat vehicles behavior depends not only on the available total driving torque but also on its distribution among the drive axles/wheels. In turn, this distribution is largely regulated by the drivetrain layout and its torque distribution devices. In this paper, a multi-wheeled (8×4) combat vehicle bicycle model has been developed and used to obtain the desired yaw rate and lateral acceleration to become reference for the design of the controllers. PID controllers were designed as upper and lower layers of the controllers. The upper controller develops the corrective yaw moment, which is the input to the lower controller to manage the independent torque distribution (torque vectoring) among the driving wheels. Several simulation maneuvers have been performed at different vehicle speeds using Matlab/Simulink-TruckSim to investigate the proposed torque vectoring control strategy. The simulation results with the proposed controller showed a significant improvement over conventional driveline, especially at severe maneuvers.

2013 ◽  
Vol 347-350 ◽  
pp. 899-903
Author(s):  
Yi He Gan ◽  
Lu Xiong ◽  
Yuan Feng ◽  
Felix Martinez

This paper studies the improvement of the handling performance of 4WD EV driven by in-wheel motors under regular driving conditions. Fundamentally the structure of torque vectoring control (TVC) system for handling control consists of two control layers. The upper layer is a model following controller which makes the vehicle follow the desired yaw rate limited by the side slip angle and lateral acceleration. The torque distribution constitutes the lower layer. Several simulations based on veDYNA/Simulink are conducted to verify the effectiveness of the control system. It is clarified that the control system exhibits satisfactory performance in both open and closed loop maneuvers and the agility of the electric vehicle is improved.


2013 ◽  
Vol 765-767 ◽  
pp. 1893-1898
Author(s):  
Xia Xu ◽  
Lu Xiong ◽  
Yuan Feng

Exploiting the structural merit that electric motors can be controlled precisely in speed und torque, this paper investigates the use of Torque Vectoring Control (TVC) for improving handling of electric vehicles. The strategy consists of two control levels. The upper level controller layer achieves reference yaw rate tracking, by using the 2-DOF planar bicycle model with a linear tire model to calculate the desired yaw rate. Then with sliding mode control law the desired yaw moment is determined. The lower control level determines control inputs for four driving motors by means of optimum traction distribution. Simulations are carried out by using the co-simulation of vehicle dynamics software CarSim and Simulink to verify the effectiveness of this control system and the effects of parameter variations (friction coefficient and throttle).


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Yilin He ◽  
Jian Ma ◽  
Xuan Zhao ◽  
Ruoyang Song ◽  
Xiaodong Liu ◽  
...  

Aiming at improving the tracking stability performance for intelligent electric vehicles, a novel stability coordinated control strategy based on preview characteristics is proposed in this paper. Firstly, the traditional stability control target is introduced with the two degrees of freedom model, which is realized by the sliding mode control strategy. Secondly, an auxiliary control target further amending the former one with the innovation formulation of the preview characteristics is established. At last, a multiple purpose Vague set leverages the contribution of the traditional target and the auxiliary preview target in various vehicle states. The proposed coordinated control strategy is analyzed on the MATLAB/CarSim simulation platform and verified on an intelligent electric vehicle established with A&D5435 rapid prototyping experiment platform. Simulation and experimental results indicate that the proposed control strategy based on preview characteristics can effectively improve the tracking stability performance of intelligent electric vehicles. In the double lane change simulation, the peak value of sideslip angle, yaw rate, and lateral acceleration of the vehicle is reduced by 13.2%, 11.4%, and 8.9% compared with traditional control strategy. The average deviations between the experimental and simulation results of yaw rate, lateral acceleration, and steering wheel angle are less than 10% at different speeds, which demonstrates the consistency between the experimental and the simulation results.


2019 ◽  
Vol 9 (24) ◽  
pp. 5428
Author(s):  
Hsing-Hui Huang ◽  
Ming-Jiang Tsai

A full-vehicle analysis model was constructed incorporating a SLA (Short Long Arm) strut front suspension system and a multi-link rear suspension system. CAE (Computer Aided Engineering) simulations were then performed to investigate the lateral acceleration, yaw rate, roll rate, and steering wheel angle of the vehicle during constant radius cornering tests. The validity of the simulation results was confirmed by comparing the computed value of the understeer coefficient (Kus) with the experimental value. The validated model was then used to investigate the steady-state cornering performance of the vehicle (i.e., the roll gradient and yaw rate gain) at various speeds. The transient response of the vehicle was then examined by means of simulated impulse steering tests. The simulation results were confirmed by comparing the calculated values of the phase lag, natural frequency, yaw rate gain rate, and damping ratio at various speeds with the experimental results. A final series of experiments was then performed to evaluate the relative effects of the cornering stiffness, initial toe-in angle, and initial camber angle on the steady-state and transient-state full-vehicle cornering handling performance. The results show that the handling performance can be improved by increasing the cornering stiffness and initial toe-in angle or reducing the initial camber angle.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Liang Su ◽  
Zhenpo Wang ◽  
Chao Chen

Purpose The purpose of this study is to propose a torque vectoring control system for improving the handling stability of distributed drive electric buses under complicated driving conditions. Energy crisis and environment pollution are two key pressing issues faced by mankind. Pure electric buses are recognized as the effective method to solve the problems. Distributed drive electric buses (DDEBs) as an emerging mode of pure electric buses are attracting intense research interests around the world. Compared with the central driven electric buses, DDEB is able to control the driving and braking torque of each wheel individually and accurately to significantly enhance the handling stability. Therefore, the torque vectoring control (TVC) system is proposed to allocate the driving torque among four wheels reasonably to improve the handling stability of DDEBs. Design/methodology/approach The proposed TVC system is designed based on hierarchical control. The upper layer is direct yaw moment controller based on feedforward and feedback control. The feedforward control algorithm is designed to calculate the desired steady-state yaw moment based on the steering wheel angle and the longitudinal velocity. The feedback control is anti-windup sliding mode control algorithm, which takes the errors between actual and reference yaw rate as the control variables. The lower layer is torque allocation controller, including economical torque allocation control algorithm and optimal torque allocation control algorithm. Findings The steady static circular test has been carried out to demonstrate the effectiveness and control effort of the proposed TVC system. Compared with the field experiment results of tested bus with TVC system and without TVC system, the slip angle of tested bus with TVC system is much less than without TVC. And the actual yaw rate of tested bus with TVC system is able to track the reference yaw rate completely. The experiment results demonstrate that the TVC system has a remarkable performance in the real practice and improve the handling stability effectively. Originality/value In view of the large load transfer, the strong coupling characteristics of tire , the suspension and the steering system during coach corning, the vehicle reference steering characteristics is defined considering vehicle nonlinear characteristics and the feedforward term of torque vectoring control at different steering angles and speeds is designed. Meanwhile, in order to improve the robustness of controller, an anti-integral saturation sliding mode variable structure control algorithm is proposed as the feedback term of torque vectoring control.


Author(s):  
Federico Cheli ◽  
Marco Pedrinelli ◽  
Andrea Zorzutti

In the last years automotive industry has shown a growing interest in exploring the field of vehicle dynamic control, improving handling performances and safety of the vehicle, actuating devices able to optimize the driving torque distribution to the wheels. These techniques are defined as torque vectoring. The potentiality of these systems relies on the strong coupling between longitudinal and lateral vehicle dynamics established by tires and powertrain. Due to this fact the detailed (and correct) simulation of the dynamic behaviour of the driveline has a strong importance in the development of these control systems, which aim is to optimize the contact forces distribution. The aim of this work is to build an integrated vehicle and powertrain model in order to provide a proper instrument to be used in the development of such systems, able to reproduce the dynamic interaction between vehicle and driveline and its effects on the handling performances. The developed models have been validated through comparison with experimental results obtained with a 4WD vehicle.


2012 ◽  
Vol 203 ◽  
pp. 360-364
Author(s):  
Huan Huan Zhang ◽  
Guo Ping Yang

In order to study the energy consumption feature when cornering for motorized wheels driving vehicles, the resistance force on the driving axle was analyzed. A creative method quasi-neutral steering was proposed for vehicle cornering. A motorized wheels driving vehicle model was established, and the simulation of constant speed cornering was performed when the yaw rate as the parameter to control the front-rear torque distribution and the lateral acceleration as the parameter to control the left-right torque distribution. The results indicate that no wheel slipping is happened when quasi-neutral steering. The torque on the rear outer wheel is more than other wheels, and the torque on the outer wheels is more than inner wheels. The power consumption decreases 1.15% by quasi-neutral steering.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Alberto Parra ◽  
Asier Zubizarreta ◽  
Joshué Pérez ◽  
Martín Dendaluce

Transport electrification is currently a priority for authorities, manufacturers, and research centers around the world. The development of electric vehicles and the improvement of their functionalities are key elements in this strategy. As a result, there is a need for further research in emission reduction, efficiency improvement, or dynamic handling approaches. In order to achieve these objectives, the development of suitable Advanced Driver-Assistance Systems (ADAS) is required. Although traditional control techniques have been widely used for ADAS implementation, the complexity of electric multimotor powertrains makes intelligent control approaches appropriate for these cases. In this work, a novel intelligent Torque Vectoring (TV) system, composed of a neuro-fuzzy vertical tire forces estimator and a fuzzy yaw moment controller, is proposed, which allows enhancing the dynamic behaviour of electric multimotor vehicles. The proposed approach is compared with traditional strategies using the high fidelity vehicle dynamics simulator Dynacar. Results show that the proposed intelligent Torque Vectoring system is able to increase the efficiency of the vehicle by 10%, thanks to the optimal torque distribution and the use of a neuro-fuzzy vertical tire forces estimator which provides 3 times more accurate estimations than analytical approaches.


2019 ◽  
Vol 11 (9) ◽  
pp. 168781401987731
Author(s):  
Qiguang Wang ◽  
Ye Zhuang ◽  
Jiannan Wei ◽  
Konghui Guo

In this article, a driver model–based direct yaw moment controller, selected as the upper controller, is developed, of which the control target is determined through a reference driver model in accordance with the driver’s intention. The sliding surface is chosen by the difference between the desired yaw rate and the real output yaw rate. Then, the desired yaw moment is calculated by the sliding mode control. In the lower controller, a novel control torque distribution strategy is designed based on the analysis of the tire characteristics. In addition, an admissible control set of the control torques is calculated in real time through an embedded tire model “UniTire.” Finally, a driver-in-the-loop experiment, via the driving simulator, is conducted to verify the proposed direct yaw moment controller.


2014 ◽  
Vol 668-669 ◽  
pp. 124-128
Author(s):  
Chang Lin Li ◽  
Jin Xiang Wang ◽  
Nan Chen

This paper discusses an optimal algorithm for distributing tyre force by an analytical multiplier penalty function method with which the maneuverability and stability of the four-wheel independent driving vehicles can be improved. Based on hierarchical method, the controller is divided into the upper level and lower level one. In the upper level controller, the yaw moment is calculated by sliding control to track the desired yaw rate. In the lower level controller, the analytical multiplier penalty method is utilized to distribute the yaw moment to tyre forces according with equality constraints of yaw and longitudinal acceleration. Simulation was conducted with Matlab/Simulink and Carsim. Simulation results show that the proposed method is effective.


Sign in / Sign up

Export Citation Format

Share Document