scholarly journals Numerical Study on the Critical Frequency Response of Jet Engine Rotors for Blade-Off Conditions against Bird Strike

2019 ◽  
Vol 9 (24) ◽  
pp. 5568 ◽  
Author(s):  
Saeed Badshah ◽  
Ahsan Naeem ◽  
Amer Farhan Rafique ◽  
Ihsan Ul Haq ◽  
Suheel Abdullah Malik

Vibrations are usually induced in aero engines under their normal operating conditions. Therefore, it is necessary to predict the critical frequencies of the rotating components carefully. Blade deformation of a jet engine under its normal operating conditions due to fatigue or bird strike is a realistic possibility. This puts the deformed blade as one of the major safety concerns in commercially operating civil aviation. A bird strike introduces unbalanced forces and non-linearities into the engine rotor system. Such dynamic behavior is a primary cause of catastrophic failures. The introduction of unbalanced forces due to a deformed blade, as a result of a bird strike, can change the critical frequency behavior of engine rotor systems. Therefore, it is necessary to predict their critical frequencies and dynamic behavior carefully. The simplified approach of the one-dimensional and two-dimensional elements can be used to predict critical frequencies and critical mode shapes in many cases, but the use of three-dimensional elements is the best method to achieve the goals of a modal analysis. This research explores the effect of a bird strike on the critical frequencies of an engine rotor. The changes in critical mode shapes and critical frequencies as a result of a bird strike on an engine blade are studied in this research. Commercially available analysis software ANSYS version 18.2 is used in this study. In order to account for the material nonlinearities, a Johnson Cook material model is used for the fan blades and an isotropic–elastic–plastic–hydrodynamic material model is used for modeling the bird. The bird strike event is analyzed using Eularian and smoothed particle hydrodynamics (SPH) techniques. A difference of 0.1% is noted in the results of both techniques. In the modal analysis simulation of the engine rotor before and after the bird strike event, the critical failure modes remain same. However, a change in the critical frequencies of the modes is observed. An increase in the critical frequencies and excitation RPMs (revolution per minute) of each mode are observed. As the mode order is increased, the higher the rise in critical frequency and excitation RPMs. Also, a change in the whirl direction of the different modes is noted.

Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 311
Author(s):  
Chan-Jung Kim

Previous studies have demonstrated the sensitivity of the dynamic behavior of carbon-fiber-reinforced plastic (CFRP) material over the carbon fiber direction by performing uniaxial excitation tests on a simple specimen. However, the variations in modal parameters (damping coefficient and resonance frequency) over the direction of carbon fiber have been partially explained in previous studies because all modal parameters have only been calculated using the representative summed frequency response function without modal analysis. In this study, the dynamic behavior of CFRP specimens was identified from experimental modal analysis and compared five CFRP specimens (carbon fiber direction: 0°, 30°, 45°, 60°, and 90°) and an isotropic SCS13A specimen using the modal assurance criterion. The first four modes were derived from the SCS13A specimen; they were used as reference modes after verifying with the analysis results from a finite element model. Most of the four mode shapes were found in all CFRP specimens, and the similarity increased when the carbon fiber direction was more than 45°. The anisotropic nature was dominant in three cases of carbon fiber, from 0° to 45°, and the most sensitive case was found in Specimen #3.


Author(s):  
Bruna Nabuco ◽  
Sandro D. Amador ◽  
Evangelos I. Katsanos ◽  
Ulf T. Tygesen ◽  
Erik Damgaard Christensen ◽  
...  

Abstract Aiming to ensure the structural integrity of an offshore structure, wave-induced responses have been measured during normal operating conditions. Operational Modal Analysis is applied to the data obtained from continuously monitoring the structure. Sensors placed only on the topside of an offshore platform are sufficient to provide information to identify the modal properties of the structure, such as natural frequencies, damping ratios, and mode shapes. A finite element model is created and updated in line with the identified dynamic properties for applying a modal expansion technique in the interest of accessing information at any point of the structure. Wave radars are also placed at the platform from which the wave forces are calculated based on basic industrial standard models. In this way, the wave kinematics are estimated according to the linear wave theory associated with Wheeler stretching. Since this study is related to offshore structures composed by slender elements, the wave forces are estimated using Morison formulation. By assigning typical values to the drag and inertia coefficients, wave loads are estimated and applied to the updated finite element model. For the diffraction effect, the wave load has also been evaluated according to MacCamy and Fuchs theory. The responses obtained from this procedure are compared with measured responses. In addition to describing the process, this paper presents a case study to verify the theory using monitoring data from a tripod jacket. Results indicate realistic response estimation that contributes to the knowledge about the state of the structure.


2015 ◽  
Vol 76 (8) ◽  
Author(s):  
A. I. Yusuf ◽  
M. A. Norliyati ◽  
M. A. Yunus ◽  
M. N. Abdul Rani

Elastomeric bearing is a significant device in structures such as in bridges and buildings. It is used to isolate the ground structure (substructure) and the above ground structure (superstructure) from seismic loads such as earthquake load. Understanding the dynamic behavior of the elastomeric bearing in terms of natural frequencies, mode shapes and damping are increasingly important especially in improving the design and the failure limit of the elastomeric bearing. Modal analysis is one of the methods used to determine the dynamic properties of any materials. Hence, the main objective of this research is to determine the dynamic properties of elastomeric bearing components in terms of natural frequencies, mode shapes, and damping via numerical and experimental modal analysis. This method had been successfully performed in investigating the dynamic behavior of rubber and steel shim plate.


2014 ◽  
Vol 58 (04) ◽  
pp. 216-224 ◽  
Author(s):  
Esben Orlowitz ◽  
Anders Brandt

The dynamic characteristics of ship structures are becoming more important as the flexibility of modern ships increases, for example, to predict reliable design life. This requires an accurate dynamic model of the structure, which, because of complex vibration environment and complex boundary conditions, can only be validated by measurements. In the present paper the use of operational modal analysis (OMA) for dynamic characterization of a ship structure based on experimental data, from a full-scale measurement of a 210-m long Ro-Lo ship during sea trial, is presented. The measurements contain three different data sets obtained under different operating conditions of the ship: 10 knots cruising speed, 18 knots cruising speed, and at anchor. Natural frequencies, modal damping ratios, and mode shapes have been successfully estimated for the first 10 global modes. Damping ratios for the current ship were found within the range 0.9%–1.9% and natural frequencies were found to range from 0.8 to 4.1 Hz for the first 10 global modes of the ship at design speed (18 knots). The three different operating conditions showed, in addition, a speed dependency of the natural frequencies and damping ratios. The natural frequencies were found to be lower for the 18-knots condition compared with the two other conditions, most significantly for the vertical bending modes. Also, for the vertical bending modes, the damping ratios increased by 28%–288% when the speed increased from 10 to 18 knots. Other modes were not found to have the same strong speed dependency.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
J. Felipe Vásquez-Arango ◽  
Reiner Buck ◽  
Robert Pitz-Paal

An experimental and numerical modal analysis was performed on an 8 m2 T-shaped heliostat structure at different elevation angles. The experimental results were used to validate a finite element (FE) model by comparing natural frequencies and mode shapes. The agreement between experiments and simulations is good in all operating points investigated. In addition, damping coefficients were determined experimentally for each mode, in order to provide all necessary information for the development of a dynamic model. Furthermore, potentially critical operating conditions caused by vortex shedding were identified using a simple approach.


Author(s):  
Matthias Strauch ◽  
Wolfgang Beer ◽  
Ingo Stephan

Flexible operation at a wide range of operating conditions combined with very high efficiency is a fundamental customer requirement for industrial steam turbines today. The blading of turbines has to be designed with those objectives in mind. Especially for intermediate pressure (IP) blades operating at fixed and variable speed there is high potential for improvement with respect to efficiency. Nonetheless these blades have to satisfy rules of reliability and mechanical integrity, in many cases American Petroleum Institute (API) Standard 612 requirements. In this paper the dynamic behavior of IP blades with an improved and efficient 3D design is investigated numerically and verified by experiments. Shrouded blades are common for IP blade design to ensure a low dynamic stress level. These blades are supposed to form a closed coupling contact between adjacent blades to grant higher stiffness of the blade row and additional contact damping. Natural frequencies and mode shapes mainly remain on stiffness and mass distribution. Contact pressure at assembly state is generated by geometric interferences of the blades. Operational centrifugal forces and untwisting of blades tend to reduce the shroud contact pressure. One focus of this study is the research of different blade shroud contact conditions after the assembly process and the influence on closed shroud conditions during operation. A highly sophisticated numerical 3D model was set up to simulate and predict contact status and dynamic behavior of the blade row. Forced vibrations were imposed on the blade rows in a spin bunker to measure speed dependent frequencies and the effect of reduced shroud forces. Three-dimensional blades as well as cylindrical blades were tested on the same rotor to compare efficiency improved blades with long term industrial proven design. Results of the experiment were in good agreement with results of numerical calculations. A 10 MW steam turbine with one controlled extraction was used for validation. The turbine was operated within and beyond standard operational limits. Amongst others, the predicted contact and dynamic behavior were verified based on centrifugal forces, steam forces and real temperature distributions. Results confirmed that closed shroud contact was maintained at all operating points for properly assembled blade rows.


2013 ◽  
Vol 589-590 ◽  
pp. 19-22
Author(s):  
Lu Ning Liu ◽  
Zhen Yu Shi ◽  
Zhan Qiang Liu

In this paper, a face-milling tool system is dealt with the Finite Element Modal Analysis (FEMA) using advanced contact technology functionalities. Dynamic characteristics analysis is performed and the stiffness contribution is included in the modal pre-stressed analysis. Natural frequencies and mode shapes of vibration are calculated. The FEMA is followed by experiments performed for different operating conditions of the face-milling system. The dynamic characteristics obtained in this paper can be used to optimize the face-milling cutter in high speed machining.


Author(s):  
S. Vercammen ◽  
C. González Díaz ◽  
P. Kindt ◽  
C. Thiry ◽  
J. Middelberg ◽  
...  

Although tire/road noise and tire vibration phenomena have been studied for decades, there are still some missing links in the process of accurately predicting and controlling the overall tire/road noise and vibration. An important missing link is represented by the effect of rolling on the dynamic behavior of a tire. Consequently, inside the European seventh framework program, an industry-academia partnership project, named TIRE-DYN, has been founded between KU Leuven, Goodyear and LMS International. By means of experimental and numerical analyses, the effects of rolling on the tire dynamic behavior are quantified. This paper presents the results of vibration measurements on a rotating tire with an embedded accelerometer. Modal parameters of the rolling tire are estimated from an operational modal analysis. In addition, the dispersion curves, which give detailed insight in the wave propagation behavior of a structure, are analyzed for the rolling tire. The goal of these analyses is to deepen the understanding on the influence of rolling on the tire dynamic behavior.


2007 ◽  
Vol 353-358 ◽  
pp. 1195-1198 ◽  
Author(s):  
Y.B. Chen ◽  
J.G. Han ◽  
D.Q. Yang

Structural operating conditions may significantly differ from those applied during laboratory tests where the structure is well known, well installed and properly excited. For structures under their natural loading conditions, or excited by random forces, excitations cannot be measured and are usually non stationary. Hence, an improvement operational modal analysis is a useful complement to the traditional modal analysis approach. The aim of this paper is to present the application of a new identification procedure, named wavelet-based identification technique of structural modal parameters. Wavelet-based identification that works in time-frequency domain is used to identify the dynamic characteristics of the structural system in terms of natural frequencies, damping coefficients and mode shapes. The paper has shown how the amplitude and the phase of the wavelet transform of operational vibration measurements are related to eigenfrequencies and damping coefficients, and the wavelet-based spectrum analysis is used to identify the mode shapes of the structure. Those modal parameters can be used to detect damage of structures. A simulation example has demonstrated that current identified results are comparable with those previously obtained from the peak pick method in frequency domain and stochastic subspace identification in time domain.


Author(s):  
Jesús Otero Yugat ◽  
Gorka Agirre Castellanos ◽  
Igor Alonso Portillo

This paper presents a theoretical and experimental study done on an electro-diesel locomotive in order to evaluate the dynamic behavior of the vehicle in terms of safety, running performance and wheel-track interaction. The vibration analysis has been made by means of different experimental methodologies. The first one consists on the acquisition of accelerations at points located at the wheelset, the truck frame and the coach, using piezorresistive accelerometers. The registered signals allow to validate the locomotive in terms of safety against derailment and running behavior, according the UIC 518 leaflet. The second method is based on the modal analysis theory and includes the dynamic properties estimation under vibrational excitation. This procedure takes into account the determination of modal parameters such as natural frequencies, modal damping ratios and mode shapes, by means of a control hydraulic actuator. The third methodology consists on the operational modal analysis done with the experimental measurements acquired on track tests, in order to validate the results obtained by modal analysis and evaluate the dynamic behavior under different speed ranges and cant deficiencies. Several tests have been done by means of the described methods in an electro-diesel locomotive composed by a primary suspension with dampers and a secondary suspension with rigid stiffness. In addition, two types of dampers have been evaluated with the purpose of optimizing the damping properties of the vehicle’s primary suspension. Through these experimental methods, a useful tool for the prediction and analysis of the dynamic behavior is provided. Additionally, the results obtained by means of these methodologies permit examining the influence of different running conditions and vehicle properties on the modal parameters.


Sign in / Sign up

Export Citation Format

Share Document