scholarly journals High-Speed Cutting of Synthetic Trabecular Bone—A Combined Experimental–Computational Investigation

2021 ◽  
Vol 2 (3) ◽  
pp. 650-666
Author(s):  
Macdarragh O’Neill ◽  
Ted J. Vaughan

Orthopaedic surgical cutting instruments are required to generate sufficient forces to penetrate bone tissue while minimising the risk of thermal and mechanical damage to the surrounding environment. This study presents a combined experimental–computational approach to determine relationships between key cutting parameters and overall cutting performance of a polyurethane-based synthetic trabecular bone analogue under orthogonal cutting conditions. An experimental model of orthogonal cutting was developed, whereby an adaptable cutting tool fixture driven by a servo-hydraulic uniaxial test machine was used to carry out cutting tests on Sawbone® trabecular bone analogues. A computational model of the orthogonal cutting process was developed using Abaqus/Explicit, whereby an Isotropic Hardening Crushable Foam elastic-plastic model was used to capture the complex post-yield behaviour of the synthetic trabecular bone. It was found that lower tool rake angles resulted in the formation of larger discontinuous chips and higher cutting forces, while higher rake angles tended to lead to more continuous chip formation and lower cutting forces. The computational modelling framework provided captured features of both chip formation and axial cutting forces over a wide range of cutting parameters when compared with experimental observations. This experimentally based computational modelling framework for orthogonal cutting of trabecular bone analogues has the potential to be applied to more complex three-dimensional cutting processes in the future.

2021 ◽  
Author(s):  
Macdarragh O'Neill ◽  
Ted J Vaughan

Orthopaedic surgical cutting instruments are required to generate sufficient forces to penetrate bone tissue, while minimizing the risk of thermal and mechanical damage to the surrounding environment. This study presents a combined experimental-computational approach to deter-mine relationships between key cutting parameters and overall cutting performance of a polyu-rethane-based synthetic trabecular bone analogue under orthogonal cutting conditions. An ex-perimental model of orthogonal cutting was developed, whereby an adaptable cutting tool fix-ture driven by a servo-hydraulic uniaxial test machine was used to carry out cutting tests on Sawbone® trabecular bone analogues. A computational model of the orthogonal cutting process was developed using Abaqus/Explicit, whereby an Isotropic Hardening Crushable Foam elas-tic-plastic model was used to capture the complex post-yield behaviour of the synthetic trabecu-lar bone. It was found that lower tool rake-angles resulted in the formation of larger discontin-uous chips and higher cutting forces, while higher rake angles tended to lead to more continu-ous chip formation and lower cutting forces. The computational modelling framework provided excellent predictions of both chip formation and axial cutting forces over the wide range of cut-ting parameters, when compared to experimental observations. This represents the first experi-mentally-validated computational modelling framework for orthogonal cutting of trabecular bone and excellent potential to be applied to more complex three-dimensional cutting processes in the future.


2012 ◽  
Vol 500 ◽  
pp. 152-156
Author(s):  
Zeng Hui Jiang ◽  
Ji Lu Feng ◽  
Xiao Ye Deng

A finite element model of a two dimensional orthogonal cutting process is developed. The simulation uses standard finite software is able to solve complex thermo-mechanical problems. A thermo-visco-plastic model for the machined material and a rigid cutting tool were assumed. One of the main characteristic of titanium alloy is serrated shape for a wide range of cutting conditions. In order to understand the influence of cutting parameters on the chip formation when machining titanium alloy Ti-6Al-4V. The influence of the cutting speed,the cutting depth and the feed on the chip shape giving rise to segmented chips by strain localisation is respectively discussed.


2011 ◽  
Vol 223 ◽  
pp. 162-171
Author(s):  
Yan Cheng Zhang ◽  
Domenico Umbrello ◽  
Tarek Mabrouki ◽  
Stefania Rizzuti ◽  
Daniel Nelias ◽  
...  

Nowadays, numerical simulation of cutting processes receives considerable interest among the scientific and industrial communities. For that, various numerical codes are used. Nevertheless, there is no uniform standard for the comparison of simulation model with these different software. So, it is often not easy to state if a given code is more pertinent than another. In this framework, the present work deals with various methodologies to simulate orthogonal cutting operation inside two commercial codes Abaqus and Deform. The aim of the present paper is to build a common benchmark model between the two pre-cited codes which can initiate other numerical cutting model comparisons. The study is focused on the typical aeronautical material - Ti-6Al-4V - Titanium alloy. In order to carry out a comparative study between the two codes, some similar conditions concerning geometrical models and cutting parameters were respected. A multi-physic comprehension related to chip formation, cutting forces and temperature evolutions, and surface integrity is presented. Moreover, the numerical results are compared with experimental ones.


Author(s):  
Chithajalu Kiran Sagar ◽  
Amrita Priyadarshini ◽  
Amit Kumar Gupta

Abstract Tungsten heavy alloys (WHAs) are ideally suited to a wide range of density applications such as counterweights, inertial masses, radiation shielding, sporting goods and ordnance products. Manufacturing of these components essentially require machining to achieve desired finish, dimensions and tolerances However, machining of WHAs are extremely challenging because of higher values of elastic stiffness and hardness. Hence, there is a need to find the right combination of cutting parameters to carry out the machining operations efficiently. In the present work, turning tests are conducted on three different grades of WHAs, namely, 90WHA, 95WHA and 97WHA. Taguchi analysis is carried out to find out the most contributing factor as well as optimum cutting parameters that can give higher metal removal rate (MRR), lower surface roughness and lower cutting forces. It is observed that feed rate is the most prominent factor with percentage contribution varying in the range of 46–61%; whereas cutting speed has least effect on cutting forces, especially for 95WHA and 97WHA. Optimum values of forces, surface roughness and MRR and the corresponding machining parameters to be taken are presented. It is observed that 95W WHA has slightly better machinability as compared to other two grades since it gives highest MRR with lowest cutting forces and surface roughness values. The optimum machining parameter settings, so predicted, can be utilized to machine WHAs efficiently for manufacture of counter weights and inertial masses used in aerospace applications.


2014 ◽  
Vol 800-801 ◽  
pp. 380-384 ◽  
Author(s):  
Yuan Ma ◽  
Ding Wen Yu ◽  
Ping Fa Feng

Machining induced residual stress is influenced by many factors. Extensive studies on the influence of cutting parameters, tool parameters, as well as basic properties of materials have been carried out during the past decades, while another important factor, initial stress distribution in workpiece, was often ignored. In this paper a relatively complete FEM simulation on the formation mechanism of machining induced residual stress in high speed machining is carried out, illustrating the three stress zones affected by mechanical and thermal loads, and their influence on ultimate residual stress. And the influence of initial compressive stress on stress formation and cutting forces is analyzed. Initial compressive stress weakens the tensile effect caused by the shear deformation, and the residual stress tend to be more compressive with larger initial compressive stress. Cutting force becomes larger with the increase of initial compressive stress. And the results in this FEM study can be used to explain some unaccounted experimental phenomena in former researches.


2008 ◽  
Vol 375-376 ◽  
pp. 26-30
Author(s):  
Kai Xue ◽  
Xiang Ming Xu ◽  
Gang Liu ◽  
Ming Chen

The chip formation and morphology are definitely affected by tool geometry and cutting parameters such as cutting speed, feed rate, and depth of cutting. An experiment investigation was presented to study the influence of tool geometry on chip morphology, and to clarify the effect of different cutting parameters on chip deformation in orthogonal turning the wheel steel. The result obtained in this study showed that tool geometry affected the chip morphology significantly; cutting speed was the most contributive factor in forming saw-tooth chip.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4074 ◽  
Author(s):  
Víctor Criado ◽  
Norberto Feito ◽  
José Luis Cantero Guisández ◽  
José Díaz-Álvarez

Carbon Fiber-reinforced plastics (CFRPs) are widely used in the aerospace industry due to their highly mechanical properties and low density. Most of these materials are used in high-risk structures, where the damage caused by machining must be controlled and minimized. The optimization of these processes is still a challenge in the industry. In this work, a special cutting device, which allows for orthogonal cutting tests, with a linear displacement at a wide range of constant cutting speeds, has been developed by the authors. This paper describes the developed cutting device and its application to analyze the influence of tool geometry and cutting parameters on the material damage caused by the orthogonal cutting of a thick multidirectional CFRP laminate. The results show that a more robust geometry (higher cutting edge radius and lower rake angle) and higher feed cause an increase in the thrust force of a cutting tool, causing burrs and delamination damage. By reducing the cutting speed, the components with a higher machining force were also observed to have less surface integrity control.


2015 ◽  
Vol 665 ◽  
pp. 17-20 ◽  
Author(s):  
Apostolos Korlos ◽  
Orestis Friderikos ◽  
Dimitrios Sagris ◽  
Constantine David ◽  
Gabriel Mansour

The chip formation mechanism in orthogonal cutting is a phenomenon that attracts the attention of many researchers. This paper investigates experimentally the orthogonal cutting of Ti6Al4V at different cutting conditions aiming at the understanding of the chip formation mechanism. Serrated chip formation is obtained during orthogonal cutting of Ti6Al4V in a wide range of cutting speeds. The results are analyzed in order to extract useful indices relevant to chip geometry, as the adiabatic zone angle and other dimensions that describe the serrated chip. The cutting forces and the acoustic emission are measured. Finally, by the aid of 3D Computed Tomography (CT) the chip morphology is analyzed to better understand the segmentation process.


2011 ◽  
Author(s):  
M. M’hamdi ◽  
S. BenSalem ◽  
M. Boujelbene ◽  
D. Katundi ◽  
E. Bayraktar ◽  
...  

Holzforschung ◽  
2019 ◽  
Vol 73 (2) ◽  
pp. 131-138
Author(s):  
Zhaolong Zhu ◽  
Dietrich Buck ◽  
Mats Ekevad ◽  
Birger Marklund ◽  
Xiaolei Guo ◽  
...  

Abstract The objective of this study was to understand better the cutting forces and chip formation of Scots pine (Pinus sylvestris L.) with different moisture contents (MCs) and machined in different cutting directions. To that end, an orthogonal cutting experiment was designed, in which Scots pine was intermittently machined using a tungsten carbide tool to produce chips. The cutting forces were measured and the chip shapes were quantitatively described. Four conclusions can be drawn: (1) with increasing MC, the average cutting forces initially decreased and then stabilized, while the angle between the direction of the main and the resultant force continuously decreased. (2) The average cutting forces in the 90°–0° cutting direction were lower than the same forces in the 90°–90° cutting direction. (3) During machining, the dynamic cutting forces fluctuated less in the 90°–0° case. However, the dynamic feeding forces showed a decreasing trend in both the 90°–0° and the 90°–90° cases. (4) The process applied produced granule chips and flow chips, while less curly flow chips with a higher radius of curvature were more easily produced from samples with high MCs in the 90°–0° cutting direction.


Sign in / Sign up

Export Citation Format

Share Document