scholarly journals Black Carbon and Particulate Matter Concentrations in Eastern Mediterranean Urban Conditions: An Assessment Based on Integrated Stationary and Mobile Observations

Atmosphere ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 323 ◽  
Author(s):  
Tareq Hussein ◽  
Shatha Saleh ◽  
Vanessa dos Santos ◽  
Huthaifah Abdullah ◽  
Brandon Boor

There is a paucity of comprehensive air quality data from urban areas in the Middle East. In this study, portable instrumentation was used to measure size-fractioned aerosol number, mass, and black carbon concentrations in Amman and Zarqa, Jordan. Submicron particle number concentrations at stationary urban background sites in Amman and Zarqa exhibited a characteristic diurnal pattern, with the highest concentrations during traffic rush hours (2–5 × 104 cm−3 in Amman and 2–7 × 104 cm−3 in Zarqa). Super-micron particle number concentrations varied considerably in Amman (1–10 cm−3). Mobile measurements identified spatial variations and local hotspots in aerosol levels within both cities. Walking paths around the University of Jordan campus showed increasing concentrations with proximity to main roads with mean values of 8 × 104 cm−3, 87 µg/m3, 62 µg/m3, and 7.7 µg/m3 for submicron, PM10, PM2.5, and black carbon (BC), respectively. Walking paths in the Amman city center showed moderately high concentrations (mean 105 cm−3, 120 µg/m3, 85 µg/m3, and 8.1 µg/m3 for submicron aerosols, PM10, PM2.5, and black carbon, respectively). Similar levels were found along walking paths in the Zarqa city center. On-road measurements showed high submicron concentrations (>105 cm−3). The lowest submicron concentration (<104 cm−3) was observed near a remote site outside of the cities.

2019 ◽  
Author(s):  
Jia Sun ◽  
Wolfram Birmili ◽  
Markus Hermann ◽  
Thomas Tuch ◽  
Kay Weinhold ◽  
...  

Abstract. Anthropogenic emissions are a dominant contributor to air pollution. Consequently, mitigation policies have attempted to reduce anthropogenic pollution emissions in Europe since the 1990s. To evaluate the effectiveness of these mitigation policies, the German Ultrafine Aerosol Network (GUAN) was established in 2008, focusing on black carbon and sub-micrometer aerosol particles, especially ultrafine particles. In this investigation, trends of the size-resolved particle number concentrations (PNC) and the equivalent black carbon (eBC) mass concentration over a 10-year period (2009–2018) were evaluated for 16 observational sites for different environments among GUAN. The trend analysis was done for both, the full-length time series and on subsets of the time series in order to test the reliability of the results. The results show generally decreasing trends of both, the PNCs for all size ranges as well as eBC mass concentrations in all environments, except PNC in 10–30 nm at regional background and mountain sites. The annual slope of the eBC mass concentration varies between −7.7 % and −1.8 % per year. The slopes of the PNCs varies from −6.3 % to 2.7 %, −7.0 % to −2.0 %, and −9.5 % to −1.5 % per year (only significant trends) for 10–30 nm, 30–200 nm, and 200–800 nm particle diameter, respectively. The regional Mann-Kendall test yielded regional-scale trends of eBC mass concentration, N[30–200] and N[200–800] of −3.8 %, −2.0 % and −2.4 %, respectively, indicating an overall decreasing trend for eBC mass concentration and sub-micrometer PNC (except N[10–30]) all over Germany. The most significant decrease was observed on working days and during daytime in urban areas, which implies a strong evidence of reduced anthropogenic emissions. For the seasonal trends, stronger reductions were observed in winter. Possible reasons for this reduction can be the increased average ambient temperatures and wind speed in winter, which resulted in less domestic heating and stronger dilution. In addition, decreased precipitation in summer also diminishes the decrease of the PNCs and eBC mass concentration. For the period of interest, there were no significant changes in long-range transport patterns. The most likely factors for the observed decreasing trends are declining anthropogenic emissions due to emission mitigation policies of the European Union.


Toxics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Marvin Lauenburg ◽  
Matthias Karl ◽  
Volker Matthias ◽  
Markus Quante ◽  
Martin Otto Paul Ramacher

Air pollution by aerosol particles is mainly monitored as mass concentrations of particulate matter, such as PM10 and PM2.5. However, mass-based measurements are hardly representative for ultrafine particles (UFP), which can only be monitored adequately by particle number (PN) concentrations and are considered particularly harmful to human health. This study examines the dispersion of UFP in Hamburg city center and, in particular, the impact of passenger ferryboats by modeling PN concentrations and compares concentrations to measured values. To this end, emissions inventories and emission size spectra for different emission sectors influencing concentrations in the city center were created, explicitly considering passenger ferryboat traffic as an additional emission source. The city-scale chemical transport model EPISODE-CityChem is applied for the first time to simulate PN concentrations and additionally, observations of total particle number counts are taken at four different sampling sites in the city. Modeled UFP concentrations are in the range of 1.5–3 × 104 cm−3 at ferryboat piers and at the road traffic locations with particle sizes predominantly below 50 nm. Urban background concentrations are at 0.4–1.2 × 104 cm−3 with a predominant particle size in the range 50100 nm. Ferryboat traffic is a significant source of emissions near the shore along the regular ferry routes. Modeled concentrations show slight differences to measured data, but the model is capable of reproducing the observed spatial variation of UFP concentrations. UFP show strong variations in both space and time, with day-to-day variations mainly controlled by differences in air temperature, wind speed and wind direction. Further model simulations should focus on longer periods of time to better understand the influence of meteorological conditions on UFP dynamics.


2013 ◽  
Vol 13 (9) ◽  
pp. 24635-24674 ◽  
Author(s):  
C. D. Cappa ◽  
E. J. Williams ◽  
D. A. Lack ◽  
G. M. Buffaloe ◽  
D. Coffman ◽  
...  

Abstract. Emissions factors (EFs) for gas and sub-micron particle-phase species were measured in intercepted plumes as a function of vessel speed from an underway research vessel, the NOAA Ship Miller Freeman, operating a medium-speed diesel engine on low-sulfur marine gas oil. For many of the particle-phase species, EFs were determined using multiple measurement methodologies, allowing for an assessment of how well EFs from different techniques agree. The total sub-micron PM (PM1) was dominated by particulate black carbon (BC) and particulate organic matter (POM), with an average POM / BC ratio of 1.3. Consideration of the POM / BC ratios observed here with literature studies suggests that laboratory and in-stack measurement methods may over-estimate primary POM EFs relative to those observed in emitted plumes. Comparison of four different methods for black carbon measurement indicates that careful attention must be paid to instrument limitations and biases when assessing EFBC. Particulate sulfate (SO42−) EFs were extremely small and the particles emitted by Miller Freeman were inefficient as cloud condensation nuclei (CCN), even at high super saturations, consistent with the use of very low sulfur fuel and the overall small emitted particle sizes. All measurement methodologies consistently demonstrate that the measured EFs (fuel mass basis) for PM1 mass, BC and POM decreased as the ship slowed. Particle number EFs were approximately constant across the speed change, with a shift towards smaller particles being emitted at slower speeds. Emissions factors for gas-phase CO and formaldehyde (HCHO) both increased as the vessel slowed, while EFs for NOx decreased and SO2 EFs were approximately constant.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 420
Author(s):  
Benas Šilinskas ◽  
Aistė Povilaitienė ◽  
Gintautas Urbaitis ◽  
Marius Aleinikovas ◽  
Iveta Varnagirytė-Kabašinskienė

This study performed a pilot evaluation of the wood quality—defined by a single parameter: dynamic modulus of elasticity (MOEdyn, N mm−2)—of small-leaved lime (Tilia cordata Mill.) trees in urban areas. A search of the literature revealed few studies which examined the specifics of tree wood development in urban areas. Little is known about the potential of wood from urban trees wood of their suitability for the timber industry. In this study, an acoustic velocity measuring system was used for wood quality assessment of small-leaved lime trees. The MOEdyn parameter was evaluated for small-leaved lime trees growing in two urban locations (along the streets, and in an urban park), with an additional sample of forest sites taken as the control. MOEdyn was also assessed for small-leaved lime trees visually assigned to different health classes. The obtained mean values of MOEdyn of 90–120-year old small-leaved lime trees in urban areas ranged between 2492.2 and 2715.8 N mm−2. For younger trees, the values of MOEdyn were lower in the urban areas than in the forest site. Otherwise, the results of the study showed that the small-leaved lime wood samples were of relatively good quality, even if the tree was classified as moderately damaged (which could cause a potential risk to the community). Two alternatives for urban tree management can be envisaged: (1) old trees could be left to grow to maintain the sustainability of an urban area until their natural death, or (2) the wood from selected moderately damaged trees could be used to create wood products, ensuring long-term carbon retention.


2021 ◽  
Vol 11 (2) ◽  
pp. 516
Author(s):  
María Piñeiro-Iglesias ◽  
Javier Andrade-Garda ◽  
Sonia Suárez-Garaboa ◽  
Soledad Muniategui-Lorenzo ◽  
Purificación López-Mahía ◽  
...  

Light-absorbing carbonaceous aerosols (including black carbon (BC)) pose serious health issues and play significant roles in atmospheric radiative properties. Two-year measurements (2015–2016) of aerosol light absorption, combined with measurements of sub-micrometric particles, were continuously conducted in A Coruña (northwest (NW) Spain) to determine their light absorption properties: absorption coefficients (σabs) and the absorption Ångström exponent (AAE). The mean and standard deviation of equivalent black carbon (eBC) during the period of study were 0.85 ± 0.83 µg m−3, which are lower than other values measured in urban areas of Spain and Europe. High eBC concentrations found in winter are associated with an increase in emissions from anthropogenic sources in combination with lower mixing layer heights and frequent stagnant conditions. The pronounced diurnal variability suggests a strong influence from local sources. AAE had an average value of 1.26 ± 0.22 which implies that both fossil fuel combustion and biomass burning influenced optical aerosol properties. This also highlights biomass combustion in suburban areas, where the use of wood for domestic heating is encouraged, as an important source of eBC. All data treatment was gathered using SCALA© as atmospheric aerosol data management support software program.


2019 ◽  
Vol 11 (17) ◽  
pp. 2014 ◽  
Author(s):  
Bahaa Mohamadi ◽  
Timo Balz ◽  
Ali Younes

Urban areas are subject to subsidence due to varying natural and anthropogenic causes. Often, subsidence is interpreted and correlated to a single causal factor; however, subsidence is usually more complex. In this study, we adopt a new model to distinguish different causes of subsidence in urban areas based on complexity. Ascending and descending Sentinel-1 data were analyzed using permanent scatterer interferometry (PS-InSAR) and decomposed to estimate vertical velocity. The estimated velocity is correlated to potential causes of subsidence, and modeled using different weights, to extract the model with the highest correlations among subsidence. The model was tested in Alexandria City, Egypt, based on three potential causes of subsidence: rock type, former lakes and lagoons dewatering (FLLD), and built-up load (BL). Results of experiments on the tested area reveal singular patterns of causal factors of subsidence distributed across the northeast, northwest, central south, and parts of the city center, reflecting the rock type of those areas. Dual causes of subsidence are found in the southwest and some parts of the southeast as a contribution of rock type and FLLD, whereas the most complex causes of subsidence are found in the southeast of the city, as the newly built-up areas interact with the rock type and FLLD to form a complex subsidence regime. Those areas also show the highest subsidence values among all other parts of the city. The accuracy of the final model was confirmed using linear regression analysis, with an R2 value of 0.88.


2015 ◽  
Vol 8 (1) ◽  
pp. 43-55 ◽  
Author(s):  
I. Ježek ◽  
L. Drinovec ◽  
L. Ferrero ◽  
M. Carriero ◽  
G. Močnik

Abstract. We have used two methods for measuring emission factors (EFs) in real driving conditions on five cars in a controlled environment: the stationary method, where the investigated vehicle drives by the stationary measurement platform and the composition of the plume is measured, and the chasing method, where a mobile measurement platform drives behind the investigated vehicle. We measured EFs of black carbon and particle number concentration. The stationary method was tested for repeatability at different speeds and on a slope. The chasing method was tested on a test track and compared to the portable emission measurement system. We further developed the data processing algorithm for both methods, trying to improve consistency, determine the plume duration, limit the background influence and facilitate automatic processing of measurements. The comparison of emission factors determined by the two methods showed good agreement. EFs of a single car measured with either method have a specific distribution with a characteristic value and a long tail of super emissions. Measuring EFs at different speeds or slopes did not significantly influence the EFs of different cars; hence, we propose a new description of vehicle emissions that is not related to kinematic or engine parameters, and we rather describe the vehicle EF with a characteristic value and a super emission tail.


2015 ◽  
Vol 8 (3) ◽  
pp. 2881-2912 ◽  
Author(s):  
J. M. Wang ◽  
C.-H. Jeong ◽  
N. Zimmerman ◽  
R. M. Healy ◽  
D. K. Wang ◽  
...  

Abstract. An automated identification and integration method has been developed to investigate in-use vehicle emissions under real-world conditions. This technique was applied to high time resolution air pollutant measurements of in-use vehicle emissions performed under real-world conditions at a near-road monitoring station in Toronto, Canada during four seasons, through month-long campaigns in 2013–2014. Based on carbon dioxide measurements, over 100 000 vehicle-related plumes were automatically identified and fuel-based emission factors for nitrogen oxides; carbon monoxide; particle number, black carbon; benzene, toluene, ethylbenzene, and xylenes (BTEX); and methanol were determined for each plume. Thus the automated identification enabled the measurement of an unprecedented number of plumes and pollutants over an extended duration. Emission factors for volatile organic compounds were also measured roadside for the first time using a proton transfer reaction time-of-flight mass spectrometer; this instrument provided the time resolution required for the plume capture technique. Mean emission factors were characteristic of the light-duty gasoline dominated vehicle fleet present at the measurement site, with mean black carbon and particle number emission factors of 35 mg kg−1 and 7.7 × 1014 kg−1, respectively. The use of the plume-by-plume analysis enabled isolation of vehicle emissions, and the elucidation of co-emitted pollutants from similar vehicle types, variability of emissions across the fleet, and the relative contribution from heavy emitters. It was found that a small proportion of the fleet (< 25%) contributed significantly to total fleet emissions; 95, 93, 76, and 75% for black carbon, carbon monoxide, BTEX, and particle number, respectively. Emission factors of a single pollutant may help classify a vehicle as a high emitter. However, regulatory strategies to more efficiently target multi-pollutants mixtures may be better developed by considering the co-emitted pollutants as well.


Sign in / Sign up

Export Citation Format

Share Document