scholarly journals Can the Aerosol Absorption Ångström Exponent Represent Aerosol Color in the Atmosphere: A Numerical Study

Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 187
Author(s):  
Dapeng Zhao ◽  
Yan Yin ◽  
Chao Liu ◽  
Chunsong Lu ◽  
Xiaofeng Xu

The aerosol absorption Ångström exponent (AAE) is widely used to indicate aerosol absorption spectrum variations and is an important parameter for characterizing aerosol optical absorption properties. This study discusses the relationship between aerosol AAEs and their colors numerically. By combining light scattering simulations, a two-stream radiative transfer model, and an RGB (Red, Green, and Blue) color model, aerosol colors that can be sensed by human eyes are numerically generated with both the solar spectrum and human eye response taken into account. Our results indicate that the responses of human eyes to visible light might be more significant than the incident spectrum in the simulation of aerosol color in the atmosphere. Using the improved numerical simulation algorithm, we obtain the color change of absorption aerosols with different AAEs. When the AAE value is small, the color of the aerosol is generally black and gray. When the AAE value increases to approximately 2 and the difference between the light transmittances at wavelengths of 400 nm and 730 nm is greater than 0.2, the aerosol will appear brown or yellow.

2018 ◽  
Vol 18 (9) ◽  
pp. 6259-6273 ◽  
Author(s):  
Chao Liu ◽  
Chul Eddy Chung ◽  
Yan Yin ◽  
Martin Schnaiter

Abstract. The absorption Ångström exponent (AAE) is an important aerosol optical parameter used for aerosol characterization and apportionment studies. The AAE of black carbon (BC) particles is widely accepted to be 1.0, although observational estimates give quite a wide range of 0.6–1.3. With considerable uncertainties related to observations, a numerical study is a powerful method, if not the only one, to provide a better and more accurate understanding on BC AAE. This study calculates BC AAE using realistic particle geometries based on fractal aggregate and an accurate numerical optical model (namely the multiple-sphere T-matrix method), and considers bulk properties of an ensemble of BC particles following lognormal size distributions. At odds with the expectations, BC AAE is not 1.0, even when BC is assumed to have small sizes and a wavelength-independent refractive index. With a wavelength-independent refractive index, the AAE of fresh BC is approximately 1.05 and relatively insensitive to particle size. For BC with geometric mean diameters larger than 0.12 µm, BC AAE becomes smaller when BC particles are aged (compact structures or coated by other non-absorptive materials). For coated BC, we prescribe the coating fraction variation based on a laboratory study, where smaller BC cores are shown to develop larger coating fractions than those of bigger BC cores. For both compact and coated BC, the AAE is highly sensitive to particle size distribution, ranging from approximately 0.8 to even over 1.4 with wavelength-independent refractive index. When the refractive index is allowed to vary with wavelength, a feature with observational backing, the BC AAE may show an even wider range. For different BC morphologies, we derive simple empirical equations on BC AAE based on our numerical results, which can serve as a guide for the response of BC AAE to BC size and refractive index. Due to its complex influences, the effects of BC geometry is better to be discussed at certain BC properties, i.e., known size and refractive index.


2013 ◽  
Vol 13 (18) ◽  
pp. 9195-9210 ◽  
Author(s):  
M. Mallet ◽  
O. Dubovik ◽  
P. Nabat ◽  
F. Dulac ◽  
R. Kahn ◽  
...  

Abstract. Aerosol absorption properties are of high importance to assess aerosol impact on regional climate. This study presents an analysis of aerosol absorption products obtained over the Mediterranean basin or land stations in the region from multi-year ground-based AERONET observations with a focus on the Absorbing Aerosol Optical Depth (AAOD), Single Scattering Albedo (SSA) and their spectral dependence. The AAOD and Absorption Angström Exponent (AAE) dataset is composed of daily averaged AERONET level 2 data from a total of 22 Mediterranean stations having long time series, mainly under the influence of urban-industrial aerosols and/or soil dust. This dataset covers the 17-yr period 1996–2012 with most data being from 2003–2011 (~89% of level-2 AAOD data). Since AERONET level-2 absorption products require a high aerosol load (AOD at 440 nm > 0.4), which is most often related to the presence of desert dust, we also consider level-1.5 SSA data, despite their higher uncertainty, and filter out data with an Angström exponent < 1.0 in order to study absorption by carbonaceous aerosols. The SSA dataset includes AERONET level-2 products. Sun-photometer observations show that values of AAOD at 440 nm vary between 0.024 ± 0.01 (resp. 0.040 ± 0.01) and 0.050 ± 0.01 (0.055 ± 0.01) for urban (dusty) sites. Analysis shows that the Mediterranean urban-industrial aerosols appear "moderately" absorbing with values of SSA close to ~0.94–0.95 ± 0.04 (at 440 nm) in most cases except over the large cities of Rome and Athens, where aerosol appears more absorbing (SSA ~0.89–0.90 ± 0.04). The aerosol Absorption Angström Exponent (AAE, estimated using 440 and 870 nm) is found to be larger than 1 for most sites over the Mediterranean, a manifestation of mineral dust (iron) and/or brown carbon producing the observed absorption. AERONET level-2 sun-photometer data indicate a possible East-West gradient, with higher values over the eastern basin (AAEEast = 1.39/AAEWest = 1.33). The North-South AAE gradient is more pronounced, especially over the western basin. Our additional analysis of AERONET level-1.5 data also shows that organic absorbing aerosols significantly affect some Mediterranean sites. These results indicate that current climate models treating organics as nonabsorbing over the Mediterranean certainly underestimate the warming effect due to carbonaceous aerosols.


2015 ◽  
Vol 15 (15) ◽  
pp. 20911-20956 ◽  
Author(s):  
G. L. Schuster ◽  
O. Dubovik ◽  
A. Arola ◽  
T. F. Eck ◽  
B. N. Holben

Abstract. Recently, some authors have suggested that the absorption Angstrom exponent (AAE) can be used to deduce the component aerosol absorption optical depths (AAOD) of carbonaceous aerosols in the AERONET database. This "AAE approach" presumes that AAE &amp;ll; 1 for soot carbon, which contrasts the traditional small particle limit of AAE = 1 for soot carbon. Thus, we provide an overview of the AERONET retrieval, and investigate how the microphysics of carbonaceous aerosols can be interpreted in the AERONET AAE product. We find that AAE &amp;ll; 1 in the AERONET database requires large coarse mode fractions and/or imaginary refractive indices that increase with wavelength. Neither of these characteristics are consistent with the current definition of soot carbon, so we explore other possibilities for the cause of AAE &amp;ll; 1. We note that AAE is related to particle size, and that coarse mode particles have a smaller AAE than fine mode particles for a given aerosol mixture of species. We also note that the mineral goethite has an imaginary refractive index that increases with wavelength, is very common in dust regions, and can easily contribute to AAE &amp;ll; 1. We find that AAE &amp;ll; 1 can not be caused by soot carbon, unless soot carbon has an imaginary refractive index that increases with wavelength throughout the visible and near infrared spectrums. Finally, AAE is not a robust parameter for separating carbonaceous absorption from dust aerosol absorption in the AERONET database.


2013 ◽  
Vol 13 (4) ◽  
pp. 9267-9317 ◽  
Author(s):  
M. Mallet ◽  
O. Dubovik ◽  
P. Nabat ◽  
F. Dulac ◽  
R. Kahn ◽  
...  

Abstract. Aerosol absorption properties are of high importance to assess aerosol impact on regional climate. This study presents an analysis of aerosol absorption products obtained over the Mediterranean Basin or land stations in the region from multi-year ground-based AERONET and satellite observations with a focus on the Absorbing Aerosol Optical Depth (AAOD), Single Scattering Albedo (SSA) and their spectral dependence. The AAOD and Absorption Angström Exponent (AAE) data set is composed of daily averaged AERONET level 2 data from a~total of 22 Mediterranean stations having long time series, mainly under the influence of urban-industrial aerosols and/or soil dust. This data set covers the 17 yr period 1996–2012 with most data being from 2003–2011 (~89% of level-2 AAOD data). Since AERONET level-2 absorption products require a high aerosol load (AOD at 440 nm > 0.4), which is most often related to the presence of desert dust, we also consider level-1.5 SSA data, despite their higher uncertainty, and filter out data with an Angström exponent <1.0 in order to study absorption by carbonaceous aerosols. The SSA data set includes both AERONET level-2 and satellite level-3 products. Satellite-derived SSA data considered are monthly level 3 products mapped at the regional scale for the spring and summer seasons that exhibit the largest aerosol loads. The satellite SSA dataset includes the following products: (i) Multi-angle Imaging SpectroRadiometer (MISR) over 2000–2011, (ii) Ozone Monitoring Instrument (OMI) near-UV algorithm over 2004–2010, and (iii) MODerate resolution Imaging Spectroradiometer (MODIS) Deep-Blue algorithm over 2005–2011, derived only over land in dusty conditions. Sun-photometer observations show that values of AAOD at 440 nm vary between 0.024 ± 0.01 (resp. 0.040 ± 0.01) and 0.050 ± 0.01 (0.055 ± 0.01) for urban (dusty) sites. Analysis shows that the Mediterranean urban-industrial aerosols appear "moderately" absorbing with values of SSA close to ~0.94–0.95 ± 0.04 (at 440 nm) in most cases except over the large cities of Rome and Athens, where aerosol appears more absorbing (SSA ~0.89–0.90 ± 0.04). The aerosol Absorption Angström Exponent (AAE, estimated using 440 and 870 nm) is found to be larger than 1 for most sites over the Mediterranean, a manifestation of mineral dust (iron) and/or brown carbon producing the observed absorption. AERONET level-2 sun-photometer data indicate the existence of a moderate East–West gradient, with higher values over the eastern basin (AAEEast. = 1.39/AAEWest. = 1.33) due to the influence of desert dust. The North–South AAE gradient is more pronounced, especially over the western basin. Our additional analysis of AERONET level-1.5 data also shows that organic absorbing aerosols significantly affect some Mediterranean sites. These results indicate that current climate models treating organics as nonabsorbing over the Mediterranean certainly underestimate the warming effect due to carbonaceous aerosols. A~comparative analysis of the regional SSA variability has been attempted using satellite data. OMI and MODIS data show an absorbing zone (SSA ~0.90 at 470–500 nm) over Northeastern Africa that does not appear in the MISR retrievals. In contrast, MISR seems able to observe the East–West SSA gradient during summer, as also detected by AERONET. Also, the analysis of SSA provided by satellites indicates that the aerosol over the Mediterranean Sea appears less absorbing during spring (MAM) than summer (JJA).


2020 ◽  
Vol 20 (16) ◽  
pp. 9701-9711 ◽  
Author(s):  
Xiaolin Zhang ◽  
Mao Mao ◽  
Yan Yin ◽  
Shihao Tang

Abstract. The aerosol absorption Ångstrom exponent (AAE) is a crucial optical parameter for apportionment and characterization. Due to considerable inconsistences associated with observations, numerical research is a powerful means to give a better understanding of the AAE of aged black carbon (BC) aerosols. Numerical studies of the AAE of polydisperse BC aggregates with brown coatings using the exact multiple-sphere T-matrix method (MSTM) are performed. The objective of the study is to thoroughly assess the AAE of coated BC influenced by their observation-based detailed microphysics and then provide a new AAE parameterization for application. At odds with our expectations, more large-sized BC particles coated by thin brown carbon can have an AAE smaller than 1.0, indicating that BC aerosols internally mixing with brown carbon can even show lower AAE than pure BC particles. The AAE of BC with brown coatings is highly sensitive to the absorbing volume fraction of the coating, coated volume fraction of BC, shell ∕ core ratio, and particle size distribution with a wide variation, whereas the impacts of BC geometry and BC position within the coating are negligible. The AAE of BC with brown coatings can be larger than 3.0 if there are plenty of small-sized coated BC particles, heavy coating, or a large amount of brown carbon. However, the AAE of BC with non-absorbing coating appears to be weakly sensitive to particle microphysics with values around 1.0 (i.e., 0.7–1.4), suggesting the substantial role of the absorbing volume fraction of the coating in AAE determination. With more realistic BC geometries, our study also indicates that the occurrence of brown carbon may not be confidently determined unless AAE > 1.4. The currently popular core–shell Mie model reasonably approximates the AAE of fully coated BC by brown carbon, whereas it underestimates the AAE of partially coated or externally attached BC and underestimates more for a lower coated volume fraction of BC. In addition, we present a parameterization of the AAE of coated BC with a size distribution on the basis of numerical results, which can act as a guide for the AAE response to the absorbing volume fraction of the coating, coated volume fraction of BC, and shell ∕ core ratio. The proposed parameterization of coated BC AAE generates a decent prediction for moderate BC microphysics, whereas caution should be taken in applying it for extreme cases, such as externally attached coated BC morphology. Our findings could improve the understanding and application of the AAE of BC with brown coatings.


2020 ◽  
Author(s):  
Xiaolin Zhang ◽  
Mao Mao ◽  
Shihao Tang

Abstract. Aerosol absorption Angstrom exponent (AAE) is a crucial optical parameter for their apportionment and characterization. Due to considerable inconsistences associated with observations, a numerical research is a powerful means to give better understanding of the AAE of aged BC aerosols. Numerical studies of the AAE of polydisperse BC aggregates with brown coatings using the exact multiple-sphere T-matrix method (MSTM) are performed. The objective of the study is to thoroughly assess the AAE of coated BC influenced by their observation-based detailed microphysics and then provide a new AAE parameterization for application. At odds with our expectations, BC coated by thin brown carbon with more large particles can have an AAE smaller than 1.0, indicating that BC aerosols internally mixing with brown carbon can even show lower AAE than pure BC particles. The AAE of BC with brown coatings is highly sensitive to absorbing volume fraction of coating, coated volume fraction of BC, shell / core ratio, and particle size distribution with a wide variation, whereas the impacts of BC geometry and BC position within coating are trivial. The AAE of BC with brown coatings can be larger than 3.0, if there are more small coated BC particles, heavy coating, or more brown carbon. However, the AAE of BC with non-absorbing coating shows weakly sensitive to particle microphysics with values around 1.0 (i.e., 0.7–1.4), suggesting the substantial role of absorbing volume fraction of coating in the AAE determination. With more realistic BC geometries, our study also indicates that occurrence of brown carbon may be made confidently unless AAE > 1.4. In addition, we present a parameterization of the AAE of coated BC with a size distribution on the basis of numerical results, which can act as a guide for the AAE response to absorbing volume fraction of coating, coated volume fraction of BC, and shell / core ratio. Our findings can improve the understanding and application of the AAE of BC with brown coatings.


2010 ◽  
Vol 28 (5) ◽  
pp. 1157-1166 ◽  
Author(s):  
S. Singh ◽  
K. Soni ◽  
T. Bano ◽  
R. S. Tanwar ◽  
S. Nath ◽  
...  

Abstract. The direct aerosol radiative forcing (DARF) has been estimated for the clear-sky conditions over Delhi from January 2006 to January 2007 using Santa Barbara DISORT Atmospheric Radiative Transfer model (SBDART) in the wavelength range 300–3000 nanometer. The single scattering albedo (SSA) and the asymmetry parameter used in this model were estimated using the Optical Properties of Aerosol and Cloud (OPAC) model. The annual average AOD observed at 500 nm was ~0.86±0.42 with an average Angstrom exponent ~0.68±0.35. The average monthly AOD throughout the year over Delhi was found to be in the range 0.56 to 1.22 with the Angstrom exponent in the range 0.38 to 0.96. A high monthly average BC concentration in the range 4–15 μg m−3 led to monthly average SSA in the range 0.90±0.4 to 0.74±0.3 during the year. Consequently, the monthly average clear-sky DARF at the surface was found to vary in the range −46±8 W m−2 to −110±20 W m−2, at TOA in the range −1.4±0.4 to 21±2 W m−2, whereas in the atmosphere it was in the range 46±9 W m−2 to 115±19 W m−2 throughout the year. As the dust concentration in the atmosphere was highest (May–June) the SSA showed an increase with wavelength however when dust concentration was low the SSA decreased with the wavelength.


2017 ◽  
Author(s):  
Chao Liu ◽  
Chul Eddy Chul ◽  
Yan Yin

Abstract. The Absorption Ångström Exponent (AAE) is an important aerosol optical parameter used for aerosol characterization and apportionment studies. The AAE of black carbon (BC) is widely accepted to be 1.0, although observational estimates give a quite wide range of 0.6~1.1. With considerable uncertainties related to observations, a numerical study is a powerful method, if not the only one, to provide a better and more accurate understanding on BC AAE. This study calculates BC AAE using realistic particle geometries based on fractal aggregate and an accurate numerical optical model (namely the Multiple-Sphere T-Matrix method). At odds with the expectations, BC AAE is not 1.0, even when BC is assumed to have small sizes and a wavelength independent refractive index. With a wavelength independent refractive index, the AAE of fresh BC is approximately 1.05, and is quite insensitive to particle size distribution. BC AAE goes lower when BC particles are aged (compact structures or coated by other scattering materials). For coated BC, we prescribed the coating thickness distribution based on a published experimental study, where smaller BC cores were shown to develop thicker coating than bigger BC cores. Both Compact and Coated BC the AAE ranges, at realistic particle sizes. For both Compact and Coated BC, the AAE is highly sensitive to particle size distribution, ranging from approximately 0.8 to 1.0 for relatively large BC with wavelength-independent refractive index. When the refractive index is allowed to vary with wavelength, a feature with observational backing, the BC AAE shows a much wider range. We propose that the presented results herein serve as a comprehensive guide for the response of BC AAE to BC size, refractive index, and geometry.


2016 ◽  
Vol 16 (3) ◽  
pp. 1587-1602 ◽  
Author(s):  
G. L. Schuster ◽  
O. Dubovik ◽  
A. Arola ◽  
T. F. Eck ◽  
B. N. Holben

Abstract. Recently, some authors have suggested that the absorption Ångström exponent (AAE) can be used to deduce the component aerosol absorption optical depths (AAODs) of carbonaceous aerosols in the AERONET database. This AAE approach presumes that AAE ≪ 1 for soot carbon, which contrasts the traditional small particle limit of AAE = 1 for soot carbon. Thus, we provide an overview of the AERONET retrieval, and we investigate how the microphysics of carbonaceous aerosols can be interpreted in the AERONET AAE product. We find that AAE ≪ 1 in the AERONET database requires large coarse mode fractions and/or imaginary refractive indices that increase with wavelength. Neither of these characteristics are consistent with the current definition of soot carbon, so we explore other possibilities for the cause of AAE ≪ 1. AAE is related to particle size, and coarse mode particles have a smaller AAE than fine mode particles for a given aerosol mixture of species. We also note that the mineral goethite has an imaginary refractive index that increases with wavelength, is very common in dust regions, and can easily contribute to AAE ≪ 1. We find that AAE ≪ 1 can not be caused by soot carbon, unless soot carbon has an imaginary refractive index that increases with wavelength throughout the visible and near-infrared spectrums. Finally, AAE is not a robust parameter for separating carbonaceous absorption from dust aerosol absorption in the AERONET database.


Sign in / Sign up

Export Citation Format

Share Document