scholarly journals Impact of Fake Below-Ground Meridional Wind on Hadley Circulation: Climatology, Interannual Variability, and Long-Term Trends

Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 446
Author(s):  
Jianbo Cheng ◽  
Zhihang Xu ◽  
Xiaoya Hou

The fake below-ground meridional wind (FBGMW) exists in reanalysis products which is not present in the real atmosphere and should be removed before calculating the mass stream function (MSF). In this study, the impacts of FBGMW on Hadley circulation (HC) in terms of climatology, interannual variability, and long-term trends were investigated using five reanalysis data sets based on three different computing methods. Generally, the impacts of FBGMW on the HC are most notable, although the absolute magnitude of the FBGMW is rather small. The key finding of this study is that the FBGMW has vital influences on the Northern Hemisphere (NH) HC during boreal summer. This is because the NH HC during boreal summer is very weak; the errors of the MSF caused by not considering FBGMW have more obvious influences on the NH HC during boreal summer than that in other months. The previous analysis without considering FBGMW led to overestimation of the poleward expansion of the NH HC during boreal summer, and the long-term trends of the HC should be more accurately estimated after considering the FBGMW. This finding suggests that the previous studies related to the NH HC during boreal summer without considering FBGMW should be reconsidered.

2015 ◽  
Vol 15 (4) ◽  
pp. 2203-2213 ◽  
Author(s):  
M. Kozubek ◽  
P. Krizan ◽  
J. Lastovicka

Abstract. The Brewer–Dobson circulation (mainly meridional circulation) is very important for stratospheric ozone dynamics and thus for the overall state of the stratosphere. There are some indications that the meridional circulation in the stratosphere could be longitudinally dependent, which would have an impact on the ozone distribution. Therefore, we analyse here the meridional component of the stratospheric wind at northern middle latitudes to study its longitudinal dependence. The analysis is based on the NCEP/NCAR-1 (National Centers for Environmental Prediction and the National Center for Atmospheric Research), MERRA (Modern Era-Retrospective Analysis) and ERA-Interim (European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis Interim) reanalysis data. The well-developed two-core structure of strong but opposite meridional winds, one in each hemisphere at 10 hPa at higher northern middle latitudes, and a less pronounced five-core structure at 100 hPa are identified. In the central areas of the two-core structure the meridional and zonal wind magnitudes are comparable. The two-core structure at 10 hPa is almost identical for all three different reanalysis data sets in spite of the different time periods covered. The two-core structure is not associated with tides. However, the two-core structure at the 10 hPa level is related to the Aleutian pressure high at 10 hPa. Zonal wind, temperature and the ozone mixing ratio at 10 hPa also exhibit the effect of the Aleutian high, which thus affects all parameters of the Northern Hemisphere middle stratosphere. Long-term trends in the meridional wind in the "core" areas are significant at the 99% level. Trends of meridional winds are negative during the period of ozone depletion development (1970–1995), while they are positive after the ozone trend turnaround (1996–2012). Meridional wind trends are independent of the sudden stratospheric warming (SSW) occurrence and the quasi-biennial oscillation (QBO) phase. The influence of the 11-year solar cycle on stratospheric winds has been identified only during the west phase of QBO. The well-developed two-core structure in the meridional wind illustrates the limitations of application of the zonal mean concept in studying stratospheric circulation.


2021 ◽  
Vol 34 (3) ◽  
pp. 949-965
Author(s):  
Edward Blanchard-Wrigglesworth ◽  
Lettie A. Roach ◽  
Aaron Donohoe ◽  
Qinghua Ding

AbstractAntarctic sea ice extent (SIE) has slightly increased over the satellite observational period (1979 to the present) despite global warming. Several mechanisms have been invoked to explain this trend, such as changes in winds, precipitation, or ocean stratification, yet there is no widespread consensus. Additionally, fully coupled Earth system models run under historic and anthropogenic forcing generally fail to simulate positive SIE trends over this time period. In this work, we quantify the role of winds and Southern Ocean SSTs on sea ice trends and variability with an Earth system model run under historic and anthropogenic forcing that nudges winds over the polar regions and Southern Ocean SSTs north of the sea ice to observations from 1979 to 2018. Simulations with nudged winds alone capture the observed interannual variability in SIE and the observed long-term trends from the early 1990s onward, yet for the longer 1979–2018 period they simulate a negative SIE trend, in part due to faster-than-observed warming at the global and hemispheric scale in the model. Simulations with both nudged winds and SSTs show no significant SIE trends over 1979–2018, in agreement with observations. At the regional scale, simulated sea ice shows higher skill compared to the pan-Antarctic scale both in capturing trends and interannual variability in all nudged simulations. We additionally find negligible impact of the initial conditions in 1979 on long-term trends.


2012 ◽  
Vol 42 (3) ◽  
pp. 550-560 ◽  
Author(s):  
Daniele Castagneri ◽  
Paola Nola ◽  
Paolo Cherubini ◽  
Renzo Motta

In a forest stand, competition plays a central role, affecting individual growth. The size–growth relationship (SGR) indicates whether large trees grow proportionally more than (asymmetric SGR), equal to (symmetric), or less than (inversely asymmetric) smaller trees. SGR is thus an indicator of the growth partitioning and competition intensity within a stand. Using tree-ring analysis, we investigated long-term trends and interannual variability of SGR in several Norway spruce (Picea abies (L.) Karst.) stands in the Paneveggio Forest (eastern Italian Alps) over a 100-year period. The study plots were characterized by different stand structures (one multilayered and two monolayered) and disturbance histories (different dates of logging). Logging conducted until the 1940s induced an inversely asymmetric SGR in all the plots. During the successive five decades, in the monolayered plots, it shifted to direct asymmetric (plot 1) and to symmetric (plot 2). In the multilayered plot (plot 3), SGR remained inversely asymmetric. A direct effect of climate on SGR interannual variability was not found. However, fast-growing trees had a stronger climatic signal than slow-growing trees, indicating that growth rate affects tree response to climate. Moreover, we observed that sensitivity to climate was reduced in the monolayered plots over the study period, possibly as a consequence of increased competition.


2020 ◽  
Vol 20 (2) ◽  
pp. 753-770 ◽  
Author(s):  
Susann Tegtmeier ◽  
James Anstey ◽  
Sean Davis ◽  
Rossana Dragani ◽  
Yayoi Harada ◽  
...  

Abstract. The tropical tropopause layer (TTL) is the transition region between the well-mixed convective troposphere and the radiatively controlled stratosphere with air masses showing chemical and dynamical properties of both regions. The representation of the TTL in meteorological reanalysis data sets is important for studying the complex interactions of circulation, convection, trace gases, clouds, and radiation. In this paper, we present the evaluation of climatological and long-term TTL temperature and tropopause characteristics in the reanalysis data sets ERA-Interim, ERA5, JRA-25, JRA-55, MERRA, MERRA-2, NCEP-NCAR (R1), and CFSR. The evaluation has been performed as part of the SPARC (Stratosphere–troposphere Processes and their Role in Climate) Reanalysis Intercomparison Project (S-RIP). The most recent atmospheric reanalysis data sets (ERA-Interim, ERA5, JRA-55, MERRA-2, and CFSR) all provide realistic representations of the major characteristics of the temperature structure within the TTL. There is good agreement between reanalysis estimates of tropical mean temperatures and radio occultation data, with relatively small cold biases for most data sets. Temperatures at the cold point and lapse rate tropopause levels, on the other hand, show warm biases in reanalyses when compared to observations. This tropopause-level warm bias is related to the vertical resolution of the reanalysis data, with the smallest bias found for data sets with the highest vertical resolution around the tropopause. Differences in the cold point temperature maximize over equatorial Africa, related to Kelvin wave activity and associated disturbances in TTL temperatures. Interannual variability in reanalysis temperatures is best constrained in the upper TTL, with larger differences at levels below the cold point. The reanalyses reproduce the temperature responses to major dynamical and radiative signals such as volcanic eruptions and the quasi-biennial oscillation (QBO). Long-term reanalysis trends in temperature in the upper TTL show good agreement with trends derived from adjusted radiosonde data sets indicating significant stratospheric cooling of around −0.5 to −1 K per decade. At 100 hPa and the cold point, most of the reanalyses suggest small but significant cooling trends of −0.3 to −0.6 K per decade that are statistically consistent with trends based on the adjusted radiosonde data sets. Advances of the reanalysis and observational systems over the last decades have led to a clear improvement in the TTL reanalysis products over time. Biases of the temperature profiles and differences in interannual variability clearly decreased in 2006, when densely sampled radio occultation data started being assimilated by the reanalyses. While there is an overall good agreement, different reanalyses offer different advantages in the TTL such as realistic profile and cold point temperature, continuous time series, or a realistic representation of signals of interannual variability. Their use in model simulations and in comparisons with climate model output should be tailored to their specific strengths and weaknesses.


2007 ◽  
Vol 25 (8) ◽  
pp. 1779-1790 ◽  
Author(s):  
D. Keuer ◽  
P. Hoffmann ◽  
W. Singer ◽  
J. Bremer

Abstract. Continuous MF radar observations at the station Juliusruh (54.6° N; 13.4° E) have been analysed for the time interval between 1990 and 2005, to obtain information about solar activity-induced variations, as well as long-term trends in the mesospheric wind field. Using monthly median values of the zonal and the meridional prevailing wind components, as well as of the amplitude of the semidiurnal tide, regression analyses have been carried out with a dependence on solar activity and time. The solar activity causes a significant amplification of the zonal winds during summer (increasing easterly winds) and winter (increasing westerly winds). The meridional wind component is positively correlated with the solar activity during summer but during winter the correlation is very small and non significant. Also, the solar influence upon the amplitude of the semidiurnal tidal component is relatively small (in dependence on height partly positive and partly negative) and mostly non-significant. The derived trends in the zonal wind component during summer are below an altitude of about 83 km negative and above this height positive. During the winter months the trends are nearly opposite compared with the trends in summer (transition height near 86 km). The trends in the meridional wind components are below about 85 km positive in summer (significant) and near zero (nonsignificant) in winter; above this height during both seasons negative trends have been detected. The trends in the semidiurnal tidal amplitude are at all heights positive, but only partly significant. The detected trends and solar cycle dependencies are compared with other experimental results and model calculations. There is no full agreement between the different results, probably caused by different measuring techniques and evaluation methods used. Also, different heights and observation periods investigated may contribute to the detected differences.


2021 ◽  
Author(s):  
Kjersti Konstali ◽  
Asgeir Sorteberg

<p>We use a dataset with observations of daily precipitation from 55 homogeneity tested stations in Norway over the period 1900-2019 available from MET-Norway. These observations show that precipitation in Norway has increased monotonically by 19% since 1900. Notably, over half of the overall increase was recorded within the decade of 1980-1990. To examine possible mechanisms behind the precipitation increase, we use a diagnostic model to separate the effects of changes in vertical velocity, temperature and relative humidity. We use vertical velocity, near-surface temperature and relative humidity from two reanalysis products, ECMWF’s ERA-20C and NOAA’s 20th Century Reanalysis. The model-based precipitation estimates capture the interannual variability as well as the long-term trend, but the absolute magnitude of precipitation is underestimated. Within our model, we find that the variability in vertical velocity chiefly determines the interannual variability and long-term trends. In fact, the trend in vertical velocities contributes with more than 75% of the total modelled trend in precipitation between 1900-2019, and more than 60% of the anomalies between 1980-1990. However, over the last decades (1979 to 2019), changes in temperature and relative humidity are the main contributors to the trend. Thus, different physical processes shape the trend at different times. We hypothesize that the strong precipitation increase in the 1980’s is linked to an unusual high number of low pressure systems reaching Norway from the North-Atlantic. In recent decades, direct effects of global warming (rising temperatures and hence increased water vapour content) are thought to be the main cause of the positive trend in precipitation over Norway. </p>


2014 ◽  
Vol 27 (7) ◽  
pp. 2622-2642 ◽  
Author(s):  
Yong Sun ◽  
Tianjun Zhou

Abstract Analyses of 30-yr four reanalysis datasets [NCEP–NCAR reanalysis (NCEP1), NCEP–Department of Energy reanalysis (NCEP2), Japanese 25-year Reanalysis Project (JRA-25), and Interim ECMWF Re-Analysis (ERA-Interim)] reveal remarkably interannual variability of the Hadley circulation (HC) in boreal summer (June–August). The two leading modes of interannual variability of boreal summer HC are obtained by performing empirical orthogonal function (EOF) analysis on the mass streamfunction. A general intensification of boreal summer HC is seen in EOF-1 mode among NCEP1, NCEP2, and JRA-25 but the corresponding EOF-2 mode in ERA-Interim, while a weakened northern Hadley cell and remarkable regional variation of a southern Hadley cell are captured by the EOF-2 mode (from NCEP1, NCEP2, and JRA-25) and EOF-1 mode (from ERA-Interim), as evidenced by the enhanced (decreased) southern Hadley cell in the southern tropics (the northern tropics and southern subtropics). Both modes are driven by El Niño–like SST forcing in boreal summer, but are relevant to different phases of El Niño events. The EOF-1 (or EOF-2 derived from ERA-Interim) [EOF-2 (or EOF-1 derived from ERA-Interim)] mode is driven by SST anomalies in developing (decaying) El Niño summers. The interannual variations of the northern Hadley cell in both modes are driven by El Niño through modulating the interannual variations of the East Asian summer monsoon, while anomalous local Hadley circulation (LHC) in the regions 30°S–20°N, 110°E–180° and 30°S–20°N, 160°E–120°W in response to El Niño forcing largely determine the interannual variations of southern Hadley cell in both modes, respectively. The different behaviors of the southern Hadley cell between two leading modes can be well explained by the southward shift of the tropical heating center from north of 10°N in developing El Niño summers to south of 10°N in decaying El Niño summers.


2021 ◽  
Author(s):  
Matic Pikovnik ◽  
Žiga Zaplotnik ◽  
Lina Boljka ◽  
Nedjeljka Žagar

Abstract. This study compares the trends of Hadley cell (HC) strength using different HC measures applied to the ECMWF ERA5 and ERA-Interim reanalyses in the period 1979–2018. The HC strength is commonly evaluated by indices derived from the mass-weighted zonal-mean stream function. Other measures include the velocity potential and the vertical velocity. Six known measures of the HC strength are complemented by a measure of the average HC strength, obtained by averaging the stream function in the latitude-pressure (φ-p) plane, and by the total energy of unbalanced zonal-mean circulation in the normal-mode function decomposition. It is shown that measures of the HC strength, which rely on point values in the φ-p plane, produce unreliable long-term trends of both the northern and southern HCs, especially in ERA-Interim; magnitudes and even the signs of trends depend on the choice of HC strength measure. The two new measures alleviate the vertical and meridional inhomogeneities of the trends in the HC strength. In both reanalyses, there is a positive trend in the total energy of zonal-mean unbalanced circulation. The average HC strength measure also shows a positive trend in ERA5 in both hemispheres, while the trend in ERA-Interim is insignificant.


Sign in / Sign up

Export Citation Format

Share Document