Mechanisms behind the precipitation increase in Norway

Author(s):  
Kjersti Konstali ◽  
Asgeir Sorteberg

<p>We use a dataset with observations of daily precipitation from 55 homogeneity tested stations in Norway over the period 1900-2019 available from MET-Norway. These observations show that precipitation in Norway has increased monotonically by 19% since 1900. Notably, over half of the overall increase was recorded within the decade of 1980-1990. To examine possible mechanisms behind the precipitation increase, we use a diagnostic model to separate the effects of changes in vertical velocity, temperature and relative humidity. We use vertical velocity, near-surface temperature and relative humidity from two reanalysis products, ECMWF’s ERA-20C and NOAA’s 20th Century Reanalysis. The model-based precipitation estimates capture the interannual variability as well as the long-term trend, but the absolute magnitude of precipitation is underestimated. Within our model, we find that the variability in vertical velocity chiefly determines the interannual variability and long-term trends. In fact, the trend in vertical velocities contributes with more than 75% of the total modelled trend in precipitation between 1900-2019, and more than 60% of the anomalies between 1980-1990. However, over the last decades (1979 to 2019), changes in temperature and relative humidity are the main contributors to the trend. Thus, different physical processes shape the trend at different times. We hypothesize that the strong precipitation increase in the 1980’s is linked to an unusual high number of low pressure systems reaching Norway from the North-Atlantic. In recent decades, direct effects of global warming (rising temperatures and hence increased water vapour content) are thought to be the main cause of the positive trend in precipitation over Norway. </p>

2017 ◽  
Author(s):  
Sergio M. Vicente-Serrano ◽  
Raquel Nieto ◽  
Luis Gimeno ◽  
Cesar Azorin-Molina ◽  
Anita Drumond ◽  
...  

Abstract. We analyzed changes in surface relative humidity (RH) at the global scale from 1979 to 2014 using both observations and ERA-Interim dataset. We compared the variability and trends of RH with those of land evapotranspiration and ocean evaporation in moisture source areas across a range of selected regions worldwide. The sources of moisture for each particular region were identified by integrating different observational data and model outputs into a lagrangian approach. The aim was to account for the possible role of changes in air temperature over land, in comparison to sea surface temperature (SST), on RH variability. Results demonstrate a strong agreement between the interannual variability of RH and the interannual variability of precipitation and land evapotranspiration in regions with continentally-originated humidity. In contrast, albeit with the dominant positive trend of air temperature/SST ratio in the majority of the analyzed regions, the interannual variability of RH in the target regions did not show any significant correlation with this ratio over the source regions. Also, we did not find any significant association between the interannual variability of oceanic evaporation in the oceanic humidity source regions and RH in the target regions. Our findings stress the need for further investigation of the role of both dynamic and radiative factors in the evolution of RH over continental regions at different spatial scales.


2021 ◽  
Author(s):  
◽  
Aitana Forcén-Vázquez

<p>Subantarctic New Zealand is an oceanographycally dynamic region with the Subtropical Front (STF) to the north and the Subantarctic Front (SAF) to the south. This thesis investigates the ocean structure of the Campbell Plateau and the surrounding New Zealand subantarctic, including the spatial, seasonal, interannual and longer term variability over the ocean properties, and their connection to atmospheric variability using a combination of in-situ oceanographic measurements and remote sensing data.  The spatial and seasonal oceanographic structure in the New Zealand subantarctic region was investigated by analysing ten high resolution Conductivity Temperature and Depth (CTD) datasets, sampled during oceanographic cruises from May 1998 to February 2013. Position of fronts, water mass structure and changes over the seasons show a complex structure around the Campbell Plateau combining the influence of subtropical and subantarctic waters.  The spatial and interannual variability on the Campbell Plateau was described by analysing approximately 70 low resolution CTD profiles collected each year in December between 2002 and 2009. Conservative temperature and absolute salinity profiles reveal high variability in the upper 200m of the water column and a homogeneous water column from 200 to 600m depth. Temperature variability of about 0.7 °C, on occasions between consecutive years, is observed down to 900m depth. The presence of Subantarctic Mode Water (SAMW) on the Campbell Plateau is confirmed and Antarctic Intermediate Water (AAIW) reported for the first time in the deeper regions around the edges of the plateau.  Long-term trends and variability over the Campbell Plateau were investigated by analysing satellite derived Sea Level Anomalies (SLA) and Sea Surface Temperature (SST) time series. Links to large scale atmospheric processes are also explored through correlation with the Southern Oscillation Index (SOI) and Southern Annular Mode (SAM). SST shows a strong seasonality and interannual variability which is linked to local winds, but no significant trend is found. The SLA over the Campbell Plateau has increased at a rate of 5.2 cm decade⁻¹ in the last two decades. The strong positive trend in SLA appears to be a combination of the response of the ocean to wind stress curl (Ekman pumping), thermal expansion and ocean mass redistribution via advection amongst others.  These results suggest that the variability on the Campbell Plateau is influenced by the interaction of the STF and the SAF. The STF influence reaches the limit of the SAF over the western Campbell Plateau and the SAF influence extends all around the plateau. Results also suggest different connections between the plateau with the surrounding oceans, e.g., along the northern edge with the Bounty Trough and via the southwest edge with the SAF. A significant correlation with SOI and little correlation with SAM suggest a stronger response to tropically driven processes in the long-term variability on the Campbell Plateau.  The results of this thesis provide a new definitive assessment of the circulation, water masses and variability of the Campbell Plateau on mean, annual, and interannual time scales which will support research in other disciplines such as palaeoceanography, fisheries management and climate.</p>


2009 ◽  
Vol 22 (24) ◽  
pp. 6773-6787 ◽  
Author(s):  
Hélène Brogniez ◽  
Rémy Roca ◽  
Laurence Picon

Abstract Water vapor in the midtroposphere is an important element for the earth radiation budget. Despite its importance, the relative humidity in the free troposphere is not very well documented, mainly because of the difficulties associated with its measurements. A new long-term archive of free tropospheric humidity (FTH) derived from the water vapor channel of the Meteosat satellite from 1983 to 2005 is introduced. Special attention is dedicated to the long-term homogeneity and the definition of the retrieval layer. It is shown to complement the existing databases and is used to establish the climatology of FTH. Interannual variability is then evaluated for each season by using a normalized interannual standard deviation. This normalization approach reveals the importance of the relative variability of the dry areas to the moist regions. In consequence, emphasis is on the driest area of the region. Focusing on composites of the moist and dry seasons of the time series, the authors demonstrate that the 500-hPa relative humidity field, reconstructed using an idealized Lagrangian model, is a good proxy for the FTH variability there. The analysis of the origin of the air mass, using the back trajectory model, points out that lateral mixing between the deep tropics and extratropical latitudes takes place over this area, as advocated in previous theoretical studies. Systematic estimation of this large-scale mixing shows that, indeed, a significant part of the interannual variability of the free tropospheric humidity in this subtropical region stems from the amount of mixing of air originating from the deep tropics versus extratropical latitudes. The importance of this mechanism in the general understanding of the FTH distribution and variability is then discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Matthis Auger ◽  
Rosemary Morrow ◽  
Elodie Kestenare ◽  
Jean-Baptiste Sallée ◽  
Rebecca Cowley

AbstractDespite playing a major role in global ocean heat storage, the Southern Ocean remains the most sparsely measured region of the global ocean. Here, a unique 25-year temperature time-series of the upper 800 m, repeated several times a year across the Southern Ocean, allows us to document the long-term change within water-masses and how it compares to the interannual variability. Three regions stand out as having strong trends that dominate over interannual variability: warming of the subantarctic waters (0.29 ± 0.09 °C per decade); cooling of the near-surface subpolar waters (−0.07 ± 0.04 °C per decade); and warming of the subsurface subpolar deep waters (0.04 ± 0.01 °C per decade). Although this subsurface warming of subpolar deep waters is small, it is the most robust long-term trend of our section, being in a region with weak interannual variability. This robust warming is associated with a large shoaling of the maximum temperature core in the subpolar deep water (39 ± 09 m per decade), which has been significantly underestimated by a factor of 3 to 10 in past studies. We find temperature changes of comparable magnitude to those reported in Amundsen–Bellingshausen Seas, which calls for a reconsideration of current ocean changes with important consequences for our understanding of future Antarctic ice-sheet mass loss.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 446
Author(s):  
Jianbo Cheng ◽  
Zhihang Xu ◽  
Xiaoya Hou

The fake below-ground meridional wind (FBGMW) exists in reanalysis products which is not present in the real atmosphere and should be removed before calculating the mass stream function (MSF). In this study, the impacts of FBGMW on Hadley circulation (HC) in terms of climatology, interannual variability, and long-term trends were investigated using five reanalysis data sets based on three different computing methods. Generally, the impacts of FBGMW on the HC are most notable, although the absolute magnitude of the FBGMW is rather small. The key finding of this study is that the FBGMW has vital influences on the Northern Hemisphere (NH) HC during boreal summer. This is because the NH HC during boreal summer is very weak; the errors of the MSF caused by not considering FBGMW have more obvious influences on the NH HC during boreal summer than that in other months. The previous analysis without considering FBGMW led to overestimation of the poleward expansion of the NH HC during boreal summer, and the long-term trends of the HC should be more accurately estimated after considering the FBGMW. This finding suggests that the previous studies related to the NH HC during boreal summer without considering FBGMW should be reconsidered.


2016 ◽  
Vol 29 (18) ◽  
pp. 6445-6462 ◽  
Author(s):  
Angeline G. Pendergrass ◽  
Edwin P. Gerber

Abstract As the planet warms, climate models predict that rain will become heavier but less frequent and that the circulation will weaken. Here, two heuristic models relating moisture, vertical velocity, and rainfall distributions are developed—one in which the distribution of vertical velocity is prescribed and another in which it is predicted. These models are used to explore the response to warming and moistening as well as changes in circulation, atmospheric energy budget, and stability. Some key assumptions of the models include that relative humidity is fixed within and between climate states and that stability is constant within each climate state. The first model shows that an increase in skewness of the vertical velocity distribution is crucial for capturing salient characteristics of the changing distribution of rain, including the muted rate of mean precipitation increase relative to extremes and the decrease in the total number or area of rain events. The second model suggests that this increase in the skewness of the vertical velocity arises from the asymmetric impact of latent heating on vertical motion.


2021 ◽  
Author(s):  
◽  
Aitana Forcén-Vázquez

<p>Subantarctic New Zealand is an oceanographycally dynamic region with the Subtropical Front (STF) to the north and the Subantarctic Front (SAF) to the south. This thesis investigates the ocean structure of the Campbell Plateau and the surrounding New Zealand subantarctic, including the spatial, seasonal, interannual and longer term variability over the ocean properties, and their connection to atmospheric variability using a combination of in-situ oceanographic measurements and remote sensing data.  The spatial and seasonal oceanographic structure in the New Zealand subantarctic region was investigated by analysing ten high resolution Conductivity Temperature and Depth (CTD) datasets, sampled during oceanographic cruises from May 1998 to February 2013. Position of fronts, water mass structure and changes over the seasons show a complex structure around the Campbell Plateau combining the influence of subtropical and subantarctic waters.  The spatial and interannual variability on the Campbell Plateau was described by analysing approximately 70 low resolution CTD profiles collected each year in December between 2002 and 2009. Conservative temperature and absolute salinity profiles reveal high variability in the upper 200m of the water column and a homogeneous water column from 200 to 600m depth. Temperature variability of about 0.7 °C, on occasions between consecutive years, is observed down to 900m depth. The presence of Subantarctic Mode Water (SAMW) on the Campbell Plateau is confirmed and Antarctic Intermediate Water (AAIW) reported for the first time in the deeper regions around the edges of the plateau.  Long-term trends and variability over the Campbell Plateau were investigated by analysing satellite derived Sea Level Anomalies (SLA) and Sea Surface Temperature (SST) time series. Links to large scale atmospheric processes are also explored through correlation with the Southern Oscillation Index (SOI) and Southern Annular Mode (SAM). SST shows a strong seasonality and interannual variability which is linked to local winds, but no significant trend is found. The SLA over the Campbell Plateau has increased at a rate of 5.2 cm decade⁻¹ in the last two decades. The strong positive trend in SLA appears to be a combination of the response of the ocean to wind stress curl (Ekman pumping), thermal expansion and ocean mass redistribution via advection amongst others.  These results suggest that the variability on the Campbell Plateau is influenced by the interaction of the STF and the SAF. The STF influence reaches the limit of the SAF over the western Campbell Plateau and the SAF influence extends all around the plateau. Results also suggest different connections between the plateau with the surrounding oceans, e.g., along the northern edge with the Bounty Trough and via the southwest edge with the SAF. A significant correlation with SOI and little correlation with SAM suggest a stronger response to tropically driven processes in the long-term variability on the Campbell Plateau.  The results of this thesis provide a new definitive assessment of the circulation, water masses and variability of the Campbell Plateau on mean, annual, and interannual time scales which will support research in other disciplines such as palaeoceanography, fisheries management and climate.</p>


2006 ◽  
Vol 6 (6) ◽  
pp. 11299-11316 ◽  
Author(s):  
A. Hauchecorne ◽  
P. Keckhut ◽  
M. L. Chanin

Abstract. The upwelling planetary wave activity (PW) from the troposphere controls the intensity of the equator to pole transport of stratospheric ozone by the Brewer-Dobson circulation and thereby modulates the total ozone content at mid- and high-latitudes. Rayleigh lidar temperature data obtained from 1981 to 2001 at mid-latitude were used to study the interannual variability of PW activity in winter (October to April). The spectrum of stratospheric temperature fluctuations exhibits 2 peaks corresponding to 2 dominant modes of free travelling Rossby waves known as 16 day- and 12 day-waves. The 12 day-wave activity is shown to be anticorrelated with the equatorial QBO wind at 40 hPa. During the period 1981–2000 the global PW activity shows a negative trend for months October to January and a positive trend in March and April.


2020 ◽  
Author(s):  
Matthis Auger ◽  
Rosemary Morrow ◽  
Elodie Kestenare ◽  
Jean-Baptiste Sallée

Abstract Despite playing a major role for the global ocean heat storage, the Southern Ocean remains the most sparsely measured region of the global ocean. Here, a unique 25-year temperature time-series of the upper 800 m, repeated several times a year across the Southern Ocean, allows us to document the long-term change within water-masses and how it compares to the interannual variability. Three regions stand out as having strong change that is radically different from the interannual variability: warming of the subantarctic waters (0.29±0.09°C per decade); cooling of the near-surface subpolar waters (-0.07±0.04°C per decade); and warming of the subsurface subpolar deep waters (0.04±0.01°C per decade). Our results highlight that this subsurface warming of subpolar deep waters is, counter-intuitively, the largest change of the section regarding interannual variability. This robust warming is associated with a large shallowing (39±11 m per decade), which has been significantly underestimated by a factor of 3 to 10 in past studies. We find temperature changes of comparable magnitude to those reported in West Antarctica, which calls for a reconsideration of current ocean changes with important consequences for our understanding of future Antarctic ice-sheet mass loss.


2017 ◽  
Vol 17 (3) ◽  
pp. 1847-1863 ◽  
Author(s):  
Jiming Li ◽  
Qiaoyi Lv ◽  
Min Zhang ◽  
Tianhe Wang ◽  
Kazuaki Kawamoto ◽  
...  

Abstract. Based on 8 years of (January 2008–December 2015) cloud phase information from the GCM-Oriented Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Cloud Product (GOCCP), aerosol products from CALIPSO and meteorological parameters from the ERA-Interim products, the present study investigates the effects of atmospheric dynamics on the supercooled liquid cloud fraction (SCF) during nighttime under different aerosol loadings at global scale to better understand the conditions of supercooled liquid water gradually transforming to ice phase. Statistical results indicate that aerosols' effect on nucleation cannot fully explain all SCF changes, especially in those regions where aerosols' effect on nucleation is not a first-order influence (e.g., due to low ice nuclei aerosol frequency). By performing the temporal and spatial correlations between SCFs and different meteorological factors, this study presents specifically the relationship between SCF and different meteorological parameters under different aerosol loadings on a global scale. We find that the SCFs almost decrease with increasing of aerosol loading, and the SCF variation is closely related to the meteorological parameters but their temporal relationship is not stable and varies with the different regions, seasons and isotherm levels. Obviously negative temporal correlations between SCFs versus vertical velocity and relative humidity indicate that the higher vertical velocity and relative humidity the smaller SCFs. However, the patterns of temporal correlation for lower-tropospheric static stability, skin temperature and horizontal wind are relatively more complex than those of vertical velocity and humidity. For example, their close correlations are predominantly located in middle and high latitudes and vary with latitude or surface type. Although these statistical correlations have not been used to establish a certain causal relationship, our results may provide a unique point of view on the phase change of mixed-phase cloud and have potential implications for further improving the parameterization of the cloud phase and determining the climate feedbacks.


Sign in / Sign up

Export Citation Format

Share Document